Приборы для оценки состояния атмосферного воздуха. Мониторинг загрязнения атмосферного воздуха. Общегосударственный характер мониторинга атмосферного воздуха

Мониторинг атмосферного воздуха - это система наблюдений за состоянием атмосферного воздуха, его загрязнением и за происходящими в нем природными явлениями, а также оценка и прогноз состояния атмосферного воздуха, его загрязнения.

Объектами наблюдения являются приземный слой атмосферы и атмосферные осадки (в том числе снежный покров). Мониторинг атмосферного воздуха способствует решению следующих задач :

Сбор, анализ и обобщение информации об уровне загрязнения атмосферного воздуха отдельными химическими элементами и их соединениями;

Обеспечение федеральных и местных органов государственной и исполнительной власти информацией о состоянии воздушного бассейна;

Контроль за соблюдением государственных и международных стандартов качества атмосферного воздуха; - прогнозирование перспективных изменений состояния данного воздушного бассейна;

Информирование общественности о качестве атмосферного воздуха и развертывание систем предупреждения о резком повышении уровня загрязнения.

Система мониторинга атмосферного воздуха включает в себя в подсистемы: подсистему наблюдения за качеством воздуха, и подсистему контроля.

Подсистема наблюдения за качеством атмосферного воздуха наблюдает за состоянием воздуха на обширных территориях (крупный населенный пункт, административный район и пр.). Посты наблюдения, входящие в эту подсистему, собирают информацию об общем состоянии местного воздушного бассейна, поэтому они располагаются вне зоны влияния конкретных источников выбросов (на удалении от крупных заводов, ТЭЦ, котельных и пр.).

Подсистема контроля качества атмосферного воздуха -контролирует конкретные источники загрязнения воздуха и регулирует промышленные выбросы вредных веществ в атмосферу. Поэтому посты, входящие в подсистему контроля, располагаются вблизи конкретных заводов, фабрик, ТЭЦ и т. п. Посты наблюдения за состоянием атмосферного воздуха делятся на стационарные и передвижные.

Стационарный пост наблюдения представляет собой павильон размерами около 250 метров, в котором установлен комплект газоанализаторов (для определения концентрации загрязняющих веществ в воздухе), и управляющий контроллер для передачи данных в местный вычислительный центр. На крыше павильона устанавливается мачта с метеодатчиками (для наблюдения за погодой). Кроме того, павильон обязательно оборудуется системами жизнеобеспечения (свет, вентиляция, отопление, система пожаротушения). Наблюдения на стационарном посту ведутся круглосуточно, при этом могут использоваться 2 программы наблюдения: полная и неполная.

Полная программа включает в себя ежедневные замеры параметров воздуха в 1-00, 7-00, 13-00 и 19-00 ч по местному времени. Наблюдения ведутся ежедневно, кроме воскресений; субботы чередуются.



При использовании неполной программы наблюдения проводятся ежедневно в 7-00, 13-00 и 19-00 ч, ежедневно (суббота и воскресенье чередуются).

Измеряются температура воздуха, относительная влажность, скорость и направление ветра, концентрация диоксида серы, оксида углерода, диоксида азота и оксида азота, сумма оксидов азота, метан, сумма углеводородов без метана и общая сумма углеводородов.

Территория, на которой располагается стационарный пост, должна хорошо проветриваться, поэтому пост необходимо размещать вне аэродинамической тени зданий и вне зоны зеленых насаждений. Также не допускается размещение стационарных постов вблизи источников низких выбросов в атмосферу (небольших котельных, заводов с низкими трубами, АЗС и автостоянок и т.п.). Количество стационарных постов в населенном пункте зависит от числа жителей. Также при выборе количества и местоположения стационарных постов в конкретном населенном пункте необходимо принимать во внимание местный рельеф, особенности климата (роза ветров, количество штилевых дней в году и пр.), и особенности размещения жилой, промышленной и зеленой зон.

Передвижной пост наблюдения представляет собой микроавтобус, внутри которого установлены приборы для отбора проб, оборудование для анализа химического состава воздуха и компьютер для первичной обработки данных и передачи их в вычислительный центр. В зависимости от маршрута своего перемещения, передвижные посты подразделяются на маршрутные и подфакельные.



Маршрутный пост наблюдения предназначен для регулярного отбора проб воздуха в точках местности, лежащих на определенном маршруте. Например, маршрутные посты используются для контроля качества воздуха на крупных городских улицах.

Подфакельный пост наблюдения используется для отбора проб воздуха внутри дымового или газового фонаря конкретного промышленного предприятия. Пробы берутся на расстояниях в 200 м, 500 м, 1 км, 2 км, 6 км, 8 км, 10 км и 15 км от источника выбросов, при этом подфакельный пост постепенно удаляется от источника по направлению господствующего ветра.

Методы и технические средства, используемые для анализа проб загрязненного воздуха, весьма разнообразны:

1) Адсорбционный метод спектрального анализа газов основан на способности веществ избирательно поглощать часть проходящего сквозь них электромагнитного излучения. В процессе исследования получают спектрограмму для спектра поглощения; расположение пиков на ней показывает, какие именно загрязняющие вещества присутствуют в данной пробе воздуха, а высота пиков передает концентрацию соответствующих загрязнителей.

2) Пламенно-ионизационный метод основан на ионизации углеводородов в водородном пламени. В чистом водородном пламени содержание ионов незначительно, а при введении в пламя углеводородов количество ионов резко увеличивается, и под действием приложенного электрического поля возникает ионизационный ток. Его сила пропорциональна концентрации углеводородов. Прибор, используемый при этом методе анализа, называется пламенно-ионизационный газоанализатор , или анализатор углеводородов .

3) Хемилюминесцентный метод анализа основан на реакции оксида азота и озона, одновременно поступающих в реакционную камеру. В результате реакции наблюдается свечение с длиной волны от 600 до 2400 нм, с максимумом в районе 1200 нм. Интенсивность этого свечения пропорциональна концентрации оксида азота, и регистрируется фотоумножителем. В настоящее время этот метод является основным методом контроля концентрации оксидов азота в промышленных выбросах.

4) Флуоресцентный метод используется для выявления наличия в пробе воздуха сероводорода или диоксида серы. Пробу воздуха, предположительно содержащую диоксид серы, облучают ультрафиолетовым излучением с длиной волны 214 нм. Молекулы диоксида серы, возбуждаясь, начинают испускать ответное флуоресцентное излечение с длиной волны 350 нм. Интенсивность излучения пропорциональна концентрации диоксида серы и регистрируется фотоумножителем. Если проба воздуха исследуется на наличие в ней сероводорода, то предварительно сероводород окисляется до диоксида серы с помощью конвертора, входящего в состав оборудования.

5) Пламенно-фотометрический метод также используется для выявления наличия в пробе воздуха сероводорода и диоксида серы. В ходе исследования пробу воздуха помещают в пламя смеси водород+воздух, при этом молекулы диоксида серы или сероводорода восстанавливаются до молекул чистой серы, которые испускают излучение в ультрафиолетовой зоне спектра (длина волны от 360 до 440 нм).

6) Радиометрический метод - используется для анализа пробы воздуха на содержание пыли. Метод основан на ослаблении радиоактивного β-излучения частицами пыли. Используемый прибор - радиационный пылемер , состоящий из пробоотборного устройства, источника радиоактивного излучения и счетчика Гейгера.

7) Электрохимический метод основан на использовании химических сенсорных датчиков (ХСД). ХСД представляют собой пару чувствительных элементов с химическим покрытием, которое непосредственно контактирует с пробой воздуха, и на котором адсорбируется анализируемое загрязняющее вещество (оксид углерода, сероводород или диоксид серы). В зависимости от принципа функционирования, ХСД делятся на потенциометрические, кулонометрические, полярографические и т. д. Используемый прибор - электрохимический газоанализатор .

8) Метод газовой хроматографии - наиболее распространенный метод анализа проб воздуха на наличие и концентрацию загрязняющих веществ. Метод основан на разделении пробы воздуха на хроматографической колонке, заполненной сорбентом. Проходя через колонку, разные загрязняющие вещества оседают на разных участках сорбента. Используемый прибор - газовый хроматограф . Существует множество различных моделей хроматографов, как стационарных, предназначенных для использования в лабораториях и исследовательских центрах, так и переносных, входящих в комплектацию передвижных постов наблюдения за качеством воздуха.

Все восемь вышеизложенных методов анализа качества воздуха относятся к контактным методам мониторинга, то есть предполагают непосредственное лабораторное исследование пробы воздуха. Однако, наряду с ними, также широко используется и неконтактный метод мониторинга загрязнения воздуха, а именно - лидарное зондирование атмосферы . Этот метод позволяет выявить наличие в воздушной среде аэрозолей (взвешенных в воздухе частиц твердых или жидких веществ, диаметром 0,5 мкм и меньше). Суть метода состоит в том, что лазерное (лидарное) излучение по-разному рассеивается частицами разных загрязняющих веществ. Используемый прибор - лидар . Лидары могут быть как стационарные (кругового обзора), так и передвижные.

Стационарный лидар устанавливается в промышленной зоне и предназначен для непрерывного круглосуточного контроля аэрозольных выбросов в радиусе от 7 до 15 км. Также он позволяет измерять азимут и расстояние до источника выбросов. При обнаружении высокой концентрации аэрозоля в воздухе, оператор стационарного лидара подает команду на выезд передвижной лидарной установки для уточнения ситуации. Масса стационарного лидара около 3 000 кг, дальность действия - около 5 км днем, и около 7 км ночью.

Передвижной лидар устанавливается на автомобиле, и предназначен для анализа состава выбросов из конкретных дымовых труб и вентиляционных шахт, а также - для определения границ загрязненной зоны при промышленной аварии. Его вес - около 1 000 кг, дальность действия - от 500 м до 1 км.

Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

Отправить

Атмосферный воздух – это уникальная смесь газов, которая дает возможность существовать громадному биоразнообразию живых существ на планете. Поэтому важно поддерживать чистоту и естественный состав воздуха. Мониторинг атмосферного воздуха на содержание вредных примесей требуются по ГОСТУ и дают представление о содержании определенных веществ в атмосфере.

Такие наблюдения помогают контролировать экологическую обстановку, что особенно важно в промышленных зонах или в населенных пунктах с высоким потоком автотранспорта. Мониторинг загрязнения атмосферы производится на постах, так как требует работы точного оборудования. Приборы могут быть установлены в павильонах или в автомобильных лабораториях.

Организация замеров

Все наблюдательные посты делят на три типа по методу организации работы:

  • Стационарные. Главная задача – оценка состояния атмосферного воздуха в долгосрочной перспективе.
  • Маршрутные. Оценка уровня загрязнения атмосферного воздуха в нескольких точках.
  • Передвижные. Исследования на подфакельных территориях.

Стационарные существуют длительное время, обычно расположены на благоприятной для наблюдений местности предназначены для постоянной оценки загрязнения атмосферного воздуха в течение максимально длительного периода. Все выводы о годовом изменении концентраций в определенных регионах базируются в основном на данных таких постов. На них производится плановый, регулярный отбор проб для последующего комплексного анализа. На стационарных постах могут проводиться исследования, как по общей загрязненности атмосферы, так и по оценке содержания конкретных веществ.

Маршрутные посты также занимаются регулярным отбором проб в таких точках, в которых особенности местности не позволяют создать постоянный павильон. Задача – детальное изучение состав воздуха на обозначенной территории.

Особенности:

  • Наблюдения производятся с помощью автотранспорта.
  • Замеры производятся в выбранных точках.
  • Передвижная лаборатория в среднем посещает 3-5 точек за день, но особенности оборудования позволяют проводить до десятка замеров за день.
  • Порядок посещения точек обязательно должен быть одинаковым – как и время посещения точки.

Передвижной пост называют также подфакельным, потому что его устанавливают под газовым факелом для контроля его действия на состав атмосферы.

Особенности:

  • Наблюдения также производятся из автотранспорта.
  • Посты расположены на некотором удалении от факела – расстояние определяется для каждого конкретного случая.
  • Посты перемещаются и производят замеры в разных точках за маленький промежуток времени.

Все посты наблюдения в обязательном порядке размещаются на открытой местности, на твердой почве или на твердом покрытии.

Цикличность наблюдения

Существует всего три программы наблюдения.

  1. Полная программа заключается в расчете разовых и среднесуточных концентраций определенной категории веществ. Соответственно, наблюдения и замеры проводятся ежедневно. На данный момент регистрация осуществляется с помощью автоматики. Замеры проводят не менее 4 раз. Стандартное время для замеров – час ночи, семь часов утра, час дня и семь часов вечера.
  2. Неполная программа подразумевает ежедневные исследования для установления разовых концентраций трижды в день – замеры не проводят ночью.
  3. Сокращенная программа – это размеры дважды в светлое время суток. Наблюдения по сокращенной программе проводят в местах с благоприятной экологической обстановкой – в зеленых зонах, расположенных далеко от промышленных кварталов. Исследования по сокращенной программе и неполной можно проводить по скользящему графику, сдвигая время измерения.

Все три программы позволяют получить данные для расчета среднемесячной и среднегодовой концентрации.

Особенности исследований в павильонах

Перед установкой проводятся специальные подготовительные мероприятия:

  • Рассчитывают все возможные примеси, а также проводят предварительные расчеты их концентраций, основываясь на информации от других постов наблюдения, а также от экологических служб промышленных предприятий.
  • Изучают особенности застройки и рельефа местности.
  • Изучают перспективы развития предприятий и строительства в выбранной местности.
  • Изучают состояние энергетики.
  • Рассчитывают предполагаемое влияние транспорта на уровень загрязнения.
  • В обязательном порядке проводят комплексные метеорологические исследования.

Количество стационарных павильонов в населенном пункте зависит от экологической обстановки, количества населения, от соотношения зеленых и жилых зон. Рекомендуемая плотность для населенных пунктов с неблагоприятной экологической обстановкой составляет один пост на 5-10 км. Важно располагать посты равномерно с различных функциональных зонах: промышленной, жилой, зеленой. Также требуется проводить замеры рядом с крупнейшими автомобильными магистралями.

В настоящее время для обеспечения оптимальных условий наблюдений в России производятся стандартизированные павильоны типа «ПОСТ» со стандартизированным оборудованием. Существует несколько модификаций комплекта оборудования. Так как замеры производятся с помощью стандартных моделей оборудования, исключаются серьезные инструментальные неточности – все аппаратные ошибки будут лежать в одном диапазоне.

Стационарные функционируют и проводят наблюдения круглогодично и ежедневно, независимо от метеорологических условий.

Передвижные лаборатории

Мониторинг атмосферы на таких постах позволяет производить замеры в разных точках. Ежедневное определение загрязняющих веществ производится в местах, на которых невозможно установить стационарные павильоны.

На данный момент стандартный маршрутный пост представлен автомобильной лабораторией модели «Атмосфера-П». Она оснащена оборудованием для экспертизы воздуха и для проведения метеорологических замеров. Та же лаборатория используется для подфакельных исследований.

Условия эксплуатации лаборатории:

  • Мониторинг атмосферы возможен при температуре до 35°С внутри салона автомобиля.
  • Максимально допустимая влажность – 80% при температуре 20 °С.
  • Диапазон допустимого атмосферного давления от 680 до 790 мм.рт.столба.
  • На асфальтовом покрытии скорость автомобиля – не более 50 км/ч.

Внутри автомобиля два отсека: приборный (непосредственно оборудование) и вспомогательный. Во вспомогательном отсеке размещены датчики влажности и температуры, туда же выведена электропроводка, расположены аккумуляторы и другое вспомогательное оборудование, которое требуется для обслуживания основных приборов. Датчик скорости и направления ветра, а также специальные крепления для установки выносных датчиков размещены на крыше в специальном контейнере.

Транспортное загрязнение

Мониторинг загрязнения атмосферного воздуха автотранспортом крайне важен, так как автомобили – основной источник загрязнения.

Замеры проводятся на всех автотранспортных предприятиях. Они позволяют ежеминутно контролировать содержание вредных веществ в двигателе. Также на предприятиях автотранспорта регулярно проводят независимые проверки на соблюдение всех установленных норм. Помимо этого, для персонала предприятия предусмотрено экологическое обучение.

Исследования с помощью стационарных и маршрутных постов ограничены, так как примеси от автотранспорта распределяются необычным образом: замерить максимум можно только на самой магистрали, а при удалении от нее концентрация примесей резко падает.

Поэтому наблюдения организованы таким образом:

  1. Определяют максимум концентрации на автомагистралях при разных метеоусловиях и разном трафике.
  2. Рассчитывают границы снижения концентрации при удалении от магистрали.
  3. Проводят более тщательный экологический мониторинг в жилых и зеленых зонах, расположенных рядом с магистралями.
  4. Учитывают распределение транспортных потоков внутри городской зоны.

На автотранспортных магистралях проводят ежедневные проверки. Приборы обычно размещают на тротуаре, а точки наблюдения выбираются по интенсивности движения транспорта.

Значение для природы и человека

Оценка загрязнения атмосферного воздуха имеет большое значение для экологии – на основе полученных данных можно предсказать превышение ПДК, а также разработать комплекс мер по снижению вреда от примесей.

Исследование атмосферного воздуха проводится с такими целями:

  • Обеспечить экологическую безопасность для проживающих в районах промышленного загрязнения.
  • Собрать сведения о динамике концентрации примесей вредных веществ в атмосферном воздухе.
  • Разработать меры уменьшения вреда от факельных выбросов.
  • Проконтролировать количество углеродных выбросов от автотранспорта, не допустить стремительного роста загрязнения.
  • Создать базу данных по отдельным территориям.
  • Предсказать возможность и целесообразность размещения промышленных объектов в тех или иных регионах.

Таким образом, посты для мониторинга выполняют важнейшие функции, помогая собирать информацию, которую затем будут обрабатывать экологи. Непрерывное исследование воздуха – одно из основных направлений защиты окружающей среды. Со временем способы и методы модифицируются, исследования становятся проще и доступнее. На данный момент мониторинг проводится повсеместно.

Выходные данные сборника:

ЭКОЛОГИЧЕСКИЙ МОНИТОРИНГ АТМОСФЕРНОГО ВОЗДУХА

Мазулина Олеся Владимировна

студент, ВолгГАСУ, г. Волгоград

Полонский Яков Аркадьевич

канд. техн. наук, доцент каф. БЖДТ, ВолгГАСУ, г. Волгоград

ECOLOGICAL MONITORING OF ATMOSPHERIC AIR

Mazulina Olesia Vladimirovna

student, VolgGASU, Volgograd

Polonskiy Iakov Arkadievich

Candidate Technical , Associate Professor ofVolgGASU, Volgograd

АННОТАЦИЯ

Проблема загрязнения окружающей среды, в особенности воздушного бассейна не становится менее актуальной с течением времени. Основой для ее решения служит развитие и совершенствование систем экологического мониторинга, осуществляемого на современной организационной и технологической базе. Основными направлениями методического обеспечения являются анализ пылевого загрязнения и анализ наличия загрязняющих веществ в воздухе. Для решения этих задач необходима адекватная современная приборно-аппаратная база.

ABSTRACT

The problem of environmental pollution, particularly air pollution does not become less relevant with the passage of time. The basis for its decision serves as a development and perfection of systems of ecological monitoring, carried out on modern organisational and technological basis. The main directions of methodological support are the analysis of dust pollution and the availability of polluting substances in the air. To solve these tasks we need adequate to the modern instrument-hardware base.

Ключевые слова: загрязнение воздушной среды; экологический мониторинг; приборы и методы мониторинга.

Keywords: air environmental pollution; ecological monitoring; instrument-hardware base of monitoring.

Экологический мониторинг атмосферного воздуха (ЭМВ) представляет собой систематическое измерение количества загрязняющих веществ (ЗВ) в атмосфере с целью оценки: во-первых,его качества и, во-вторых – степени воздействия ЗВ на чувствительные объекты (например, людей, животных, растения и произведения искусства).Косвенной целью ЭМВтакже является локализация местоположения и идентификация источника загрязнения воздуха (т. н. казуальный анализ). Физически, ЗВ можно классифицировать на газообразные и твердофазные дисперсные, а химически – на активные, обладающие вредным воздействием, и пассивные. С приборно-аппаратной условной точки зрения, удобной для описания построительных схем массового ЭМ – на «пыль» и «газы».

Критериальной основой ЭМ, в его «небытовом» варианте, является комплекс нормативов и указаний, принятых на международном, государственном, муниципальном, корпоративномуровнях. Из всего множества химических веществ, биологических и физических компонентов воздуха (за исключением азота и кислорода), объектом ЭМВ, очевидно, являются те, чье воздействие, на основании эмпирических, как правило, наблюдений, приводит к негативным последствиям. Соответственно, предельно допустимые концентрации (т. н. ПДК) этих ЗВ также установлены из многолетнего опыта наблюдений и специально проводимых исследований.

Текущая концентрация ЗВ в данной точке атмосферы формируется под воздействием баланса поступлениявредных веществи их рассеивания в воздухе. Понятно, что как приток ЗВ, так и динамика их рассеивания носят нестационарный характер. Однако, эта нестационарность подчиняется определенным закономерностям - в одной и той же зоне наблюдений фиксируются колебания концентраций, причем наиболее упорядоченная картина характерна для дневных, недельных и годовых периодов.

Учитывая вышесказанное, проведение ЭМВ должно базироваться на сеть станций мониторинга, обеспечивающих адекватность его реализации. Основными требованиями являются: достаточная плотность размещения станций, наличие аппаратного комплекса средств контроля, обеспечивающего успешное фиксирование основных ожидаемых ЗВ, наличие соответствующей нормативно-методической базы и единого операционного центра, обеспечивающего своевременное и полноценное решение задач ЭМВ. Применительно к урбано-индустриальной среде, это означает, чторазвертываниесети станций ЭМВ должно производиться применительно к сформировавшемуся ландшафту застройки, а также во всех без исключения ранжированных по уровню загрязнения зонах – от наиболее чистых парковой, зон отдыха, зоны спальных районов, делового центра, зон транспортных потоков, до промышленных особо загрязняющих зон.

Примером такого решения системы ЭМВ является ГПБУ «Мосэкомониторинг» . Она развернута в виде соответствующего числа автоматических станций контроля загрязнения атмосферы, на которыхкруглосуточно, в непрерывном режиме, измеряются концентрации 23-х химических веществ (21 ЗВ контролируемых в соответствии с рекомендациями Всемирной организации здравоохранения, и также углекислого газа и кислорода). Параллельно измеряются метеорологические параметры, определяющие условия рассеивания ЗВ в атмосфере (скорость и направление ветра, температура, давление, влажность, вертикальная компонента скорости ветра).

Действующая система ЭМВ, таким образом, обеспечивает решение следующих задач:

  • контроль за соблюдением государственных и международных стандартов качества атмосферного воздуха;
  • получение объективных исходных данных для разработки природоохранных мероприятий, градостроительного планирования и планирования развития транспортных систем;
  • оценка эффективности природоохранных мероприятий.

Описанная система ЭМВ может также использоватьсядля развертывания систем предупреждения о резком повышении уровня загрязнения воздуха в интересах ГО и ЧС; а также для поддержки клинических и академических исследованийвоздействия на здоровье человека загрязнения воздуха.

Методическая база ЭМВ, в соответствии с принятой выше классификацией, должна обеспечивать оценку запыленности АВ и оценку загрязненности его ЗВ.

Одним из основных загрязнителей АВ пылью служат промышленные предприятия. И здесь, хорошо изученным и давно используемым на практике методом оценки запыленности воздуха является весовой метод, суть которого состоит в определении привеса при пропускании через фильтр определенного объема исследуемого воздуха.

В настоящее время, как правило, необходимо наряду с концентрацией пыли знать также размер частиц (дисперсность) пыли, и, кроме того,количество пылинок, содержащихся в единице объема воздуха. С этой цельюиспользуютметод непосредственного наблюдения и подсчета с применением микроскопа или использованием различных лучевых измерителей (светового и радио-диапазона).

Для качественного и количественного определения содержания в АВ ЗВ применяются газоанализаторы и хроматографы различных конструкций и производителей. Газоанализаторы, как правило, специализированы для использования в специфических условиях применения: таких, какввоздуха рабочей зоны, газовых промышленных и вентиляционных выбросах, автомобильных выбросах, технологических газовых средах, свободных зонах природных и урбанистических ландшафтов.

В зависимости от конкретного назначения, газоанализаторы контролируют определенные наборы ЗВ – от одного (озон, или CO) до нескольких (H 2 S, SO 2 , NO, NO 2 , NH 3 , HCl, Cl 2 , O 2 и более) и основаны на различных физических принципах.

Распространены хемилюминесцентные газоанализаторы (например, озона), ИК-оптические газоанализаторы (контроль оксида и диоксида углерода), интегральные газоанализаторы, позволяющие использовать любую комбинацию имеющихся газовых датчиков. Такие газоанализаторы имеют блоки обработки информации и предназначены для подключения до 32 и более измерительных-модулей. Помимо этого, современные газоанализаторы имеют модули, позволяющих проводить их автокалибровку, осуществлять управление от внешних устройств, в т. ч. удаленным способом, обеспечивают как хранение значительных объемов данных, так и вывод информации на внешние ЭВМ.

Следует отметить, что, нарядус безусловными достоинствами (возможность селективного детектирования определяемого вещества, портативность), газоанализаторы имеют и недостатки, главный из которых – невозможность фиксировать изменения качественного состава анализируемой воздушной среды при расширении ассортимента загрязнителей .

Другим распространенным классом приборов для анализа ЗВ являются хроматографы. Портативные газовые хроматографы в значительной степени лишены недостатков, присущих газоанализаторам, хотя и существенно превосходят последние по стоимости. При анализе объектов, представляющих собой микрокомпонентные смеси переменного состава, хроматографии нет альтернативы . В пересчете на стоимость определения одного компонента хроматография имеет очень низкую себестоимость, обладая одновременно высокой селективностью и чувствительностью определения .

Так, использование портативных хроматографов, укомплектованных фотоионизационным детектором, позволяет, без предварительного концентрирования, определять содержание в воздухе полиароматических углеводородов и фталатов. Такие приборы, имея массу до 10 кг, позволяют в мобильном варианте определять многочисленные органические и неорганические вещества при контроле загрязнителей воздушной среды, поиске утечки газов и т. д. непосредственно в вероятных местах аварий и инцидентов. Оперативный контроль органических примесей (ацетон, бензол, гексан, толуол, бутилацетат, этилбензол, ксилолы и т. д.) на уровне ПДК в атмосферном воздухе, воздухе рабочей зоны, при обнаружении утечки технологического или транспортируемого газа такжеможет проводиться с использованием газового переносного хроматографа, в случае, если он снабжен высокочувствительной детектирующей системой, позволяющей анализировать пробу без предварительного обогащения.

Некоторые переносные приборы предназначены для определения летучих органических соединений не только в воздухе, но и в воде и почве и могут быть использованы при проведении контроля окружающей среды, а не только воздуха рабочей зоны, производства.Как правило, они комплектуются удлиненным зондом для забора пробы, что существенно повышает мобильность и точность позиционирования проботбора.

Многие современные приборы базируются на использовании миниатюрныхфотоионизационных детекторов, что расширяет спектр применения и точность определения ЗВ.

Существуют и полифункциональные с точки зрения оперирования приборы, позволяющие осуществлять ввод пробы как шприцем, так и через дозирующее устройство с помощью встроенного насоса; они могут быть снабжены несколькими капиллярными колонками и системой обратной продувки. Работа таких приборов возможна в трех режимах. Предусмотрен режим работы как для неквалифицированного оператора (цикл запрограммированных анализов), так и для квалифицированного, которому открыт доступ к изменению различных параметров прибора. С помощью встроенного микропроцессора можно рассчитать до 50 пиков и провести калибровку по трем точкам для 25 компонентов.

Более сложные, и, как правило, точные приборы выполняются в стационарном исполнении. Они громоздки и могут использоваться лишь в лабораториях, в т. ч. передвижных, что заметно повышает их мобильность. Такие приборы предназначены, например,для качественного и количественного анализа сложных смесей органических и неорганических веществ с температурой кипения до 300°С.

Конечно, портативные приборы всегда имеют более жесткие ограничения на их использование в анализе, чем приборы в стационарной аналитической лаборатории. Тем неменее, удобство использования портативных хроматографов состоит еще и в том, что при отборе пробы не нужно входить в зону, содержащую ЗВ, если они снабжены устройствами для проведения дистанционного анализа.

Для деятельности аналитической лаборатории, хроматографический метод в контроле загрязнителей воздушной среды не имеет альтернативы, т. к. его использование позволяет определять как органические соединения различного строения, так и широкий спектр неорганических соединений. Решающую роль в этом сыграла практически полная автоматизация анализа, включая стадию пробоподготовки.

В настоящее время серийно освоен выпуск различных приборов и установок для анализа аэрозолей: радиоизотопные пылемеры, позволяющие проводить определение концентраций пыли вдиапазоне 1–500 мг/м3;комплексы, выполняющие автоматическое измерение и запись содержания в АВ пыли и сажи, автоматические пробоотборники, производящие отбор аэрозоля из воздуха для определения концентраций прямым методом, дозиметры пыли, обеспечивающие отбор проб аэрозоля для определения концентраций прямым методом при запыленности воздуха более 15 мг/м 3 .

Таким образом, современная методическая и приборная база ЭМВ достаточно хорошо отработана и предоставляет полноценную возможность для создания эффективно действующей системы ЭМВ. Конечно, методы анализа ЗВ достаточно сложны и дорогостоящи, а адекватного им развития пока не имеют системы анализа пылевых загрязнений. Тем не менее, проблема реализации полномасштабных по охвату систем ЭМВ в настоящее время скорее перешла в область системной организации из области поиска и обеспечения доступных инженерно-технических решений. Следующей задачей развития этих систем является обеспечение формирования достаточного уровня мотивации на всех уровнях управленческого персонала, как в государственно-муниципальном, так и производственно-корпоративном сегментах.

Список литературы:

  1. Шабельников В.Н., Лихачева С.В., Немова К.А. Эколого-аналитический контроль промышленных выбросов // Трубопроводный транспорт нефти.2010.№ 2. С. 62
  2. Экоаналитический контроль : методические указания. Самара: Издательство "Самарский университет", 1999

Лекция

Экологический мониторинг Саратовской области

Основные экологические проблемы Саратовской области

Загрязнение атмосферного воздуха промышленными и автомобильными выбросами является главной экологической проблемой Саратовской области:

На качество атмосферного воздуха на территории Саратовской области оказывают влияние выбросы более 400 наименований загрязняющих веществ различных классов опасности, поступающие в окружающую среду от стационарных и передвижных источников. Общая масса загрязняющих веществ, поступающих ежегодно в атмосферу, составляет более 400,0 тыс. тонн.В подавляющем большинстве источники выбросов сосредоточены в промышленных центрах области.

Более 50% от выбросов загрязняющих веществ в атмосферу приходится на долю автомобильного транспорта.

Сброс загрязняющих веществ техногенного и биогенного происхождения в поверхностные водные объекты, служащие основными источниками хозяйственно-питьевого водоснабжения для 80 % населения области – другая немаловажная проблема. Загрязнение водных объектов происходит в результате сброса неочищенных сточных вод. Ежегодно от предприятий области в водные объекты поступает со сточными водами более 100,0 тыс. т загрязняющих веществ более 20 наименований всех классов опасности.

Ухудшение состояния земельных ресурсов играет отрицательную роль вразвитии экономики Саратовской области. Снижение плодородия почв проявляется в уменьшении содержания в почвах гумуса и основных элементов питания (азота, фосфора и калия).

Увеличиваются площади кислых почв и солонцов, в последнее время заметно активизировались процессы эрозии и опустынивания земель.

Загрязнение почв вокруг промышленных центров области происходит в основном под воздействием выбросов вредных химических соединений промышленными предприятиями и транспортом. Интенсивным источником загрязнения почв являются несанкционированные свалки промышленных и бытовых отходов.

Ежегодно в области увеличивается общее количество образующихся промышленных и бытовых отходов , что обусловлено ростом промышленного производства на предприятиях и изменением структуры и состава твердых бытовых отходов (ТБО). На предприятиях области накоплено более 40 млн. т отходов производства и потребления различных классов опасности, из них более 90% составляет фосфогипс (отход производства фосфорной кислоты, накопленный на территории ООО «Балаковские минеральные удобрения»).

В области ежегодно образуется более 4 млн. м 3 твердых бытовых отходов, которые вывозятся для захоронения на полигоны и свалки ТБО. Подавляющее большинство существующих в населенных пунктах области объектов размещения отходов не обеспечивает их полную изоляцию и защиту окружающей среды, не отвечает санитарным требованиям. Это влечет за собой значитель­ную эпидемиологическую опасность, нарушение природного ландшафта, загрязнение почвы, подземных и грунтовых вод, атмосферного воздуха.

Площадь особо охраняемых природных территорий (ООПТ) регионального значения составляет 0,67 % от площади области, а общая площадь ООПТ, включая территории федерального, регионального и местного значения, составляет 139,5 тыс. га, или 1,39 % от общей площади области. Несмотря на то, что за последний годы эта площадь увеличилась более чем в 2,5 раза, данный показатель значительно отличается от среднего по Приволжскому федеральному округу (6,3 %).

Мониторинг атмосферного воздуха

Наблюдения за состоянием атмосферного воздуха на территории Саратовской области проводятся Федеральным государственным бюджетным учреждением «Саратовский центр по гидрометеорологии и мониторингу окружающей среды» (ФГБУ «Саратовский ЦГМС»).

Загрязнение атмосферного воздуха определяется по значениям концентраций примесей. Степень загрязнения оценивается при сравнении фактических концентраций с предельно допустимой концентрацией примеси в атмосферном воздухе (ПДК).

Высокое загрязнение (ВЗ) атмосферного воздуха – содержание одного или нескольких веществ, превышающее максимальную разовую ПДК в 10 и более раз.

Экстремально высокое загрязнение (ЭВЗ) – содержание одного или нескольких веществ, превышающее максимальную разовую ПДК:

В 20-29 раз при сохранении этого уровня более двух суток;

В 30-49 раз при сохранении этого уровня от 8 часов и более;

В 50 и более раз.

Уровень загрязнения атмосферного воздуха города диоксидом серы низкий. Среднегодовая и максимально разовая концентрации значительно ниже ПДК.

Среднегодовая концентрация диоксида азота сохранилась на уровне 1,0 ПДК. Наиболее загрязнен данной примесью атмосферный воздух в районе ПНЗ-8, который расположен в непосредственной близи от пересечения автомагистралей с очень интенсивным движением грузового и пассажирского автотранспорта. Среднегодовая концентрация примеси на посту составила 1,8 ПДК, максимальная разовая концентрация 4,1 ПДК зафиксирована в сентябре при штилевой погоде.

Уровень загрязнения атмосферного воздуха оксидом азота низкий. Значение среднегодовой концентрации соответствовало 0,4 ПДК.

Запыленность города осталась на уровне прошлого года. Среднегодовая концентрация составила 0,5 ПДК. Рост концентраций наблюдался с апреля по октябрь, когда преобладала сухая, ветреная погода с высоким температурным режимом и дефицитом осадков. В течение этого периода было зафиксировано 54 дня с неблагоприятными метеорологическими условиями (НМУ). Среднемесячные концентрации примеси в этот период в целом по городу составляли от 0,5 до 1,6 ПДК.

Среднегодовая концентрация примеси оксида углерода на уровне 0,6 ПДК. В большей степени загрязнен примесью район расположения ПНЗ-8, именно здесь зафиксировано наибольшее число случаев превышения допустимых нормативов (в 1,6 % пробах воздуха, тогда как в целом по городу – в 0,5 %).

Определение примеси формальдегида проводится на всех постах города. Уровень загрязнения атмосферного воздуха незначительно снизился по сравнению с предыдущим годом, но остается достаточно высоким. Среднегодовая концентрация составила 5,0 ПДК. В большей степени данной примесью загрязнен атмосферный воздух в районе размещения ПНЗ-6, который расположен вблизи промышленных предприятий и автомагистрали с интенсивным движением легкового и грузового транспорта. Среднегодовая концентрация примеси здесь достигала 6,3 ПДК (не соответствовало норме 13,5 % проб, тогда как в целом по городу – 6,6 % проб).

Бенз(а)пирен определяется на трех стационарных постах: ПНЗ-1, ПНЗ-2 и ПНЗ-5. Среднегодовая концентрация примеси составила 1,4 ПДК.

фенола проводится на ПНЗ-2, ПНЗ-5, ПНЗ-6 и ПНЗ-8. Средняя концентрация примеси за год составила 0,3 ПДК. Уровень загрязнения атмосферного воздуха данной примесью в течение пяти лет снизился (рис. 36). В большей степени данной примесью загрязнен атмосферный воздух в районе расположения ПНЗ-5 и ПНЗ-8, среднегодовая концентрация примеси здесь составила 0,7 ПДК.

Определение содержания примеси гидрофторид а проводится на двух постах ПНЗ-6 и ПНЗ-8. Уровень загрязнения атмосферного воздуха примесью низкий, среднегодовая концентрация, как и в предыдущем году, составила 0,4 ПДК.

Определение содержания примеси аммиака в атмосферном воздухе проводится на двух стационарных постах ПНЗ-2 и ПНЗ-7. В течение года концентрации примеси не превышали санитарных норм, среднегодовая концентрация составила 0,4 ПДК.

Определение содержания примеси гидрохлорида проводится на двух постах ПНЗ-1 и ПНЗ-7. Уровень загрязнения атмосферного воздуха примесью низкий. Средняя концентрация составила 0,2 ПДК. Максимальная разовая концентрация гидрохлорида 1,0 ПДК была зарегистрирована в августе на ПНЗ-1 в дневное время при слабом восточном ветре.

Сероводород определяется на ПНЗ-1, ПНЗ-2. Средняя концентрация за год составила 0,001 мг/м 3 , как и в прошлом году. Максимальная разовая концентрация примеси 1,0 ПДК была зарегистрирована на ПНЗ-1 в октябре в вечернее время суток при слабом южном ветре.

Ароматические углеводороды о пределяются на стационарном посту ПНЗ-2. Средние концентрации составили: по бензолу – 0,1 ПДК, по ксилолам – 0,05 ПДК, по толуолу – 0,02 ПДК, по этилбензолу – 0,0 ПДК. Максимальные разовые концентрации достигали значений: по этилбензолу – 3,5 ПДК, по бензолу – 1,2 ПДК, по толуолу и ксилолам – 1,1 ПДК.

Тяжелые металлы (железо, кадмий, магний, марганец, медь, никель, свинец, цинк и хром) определяются на одном посту - ПНЗ-7. Все среднемесячные концентрации металлов находились в пределах гигиенических норм.

Динамика загрязнения атмосферного воздуха города за последние пять лет представлена в таблице 1

Таблица 1

Динамика загрязнения атмосферного воздуха г. Саратова основными

и специфическими примесями за 2007-2011 годы, мг/м 3

Наименование ЗВ Среднегодовые концентрации загрязняющих веществ ПДК с.с.
2007 г. 2008 г. 2009 г. 2010 г. 2011 г.
Пыль (взвешенные в-ва) 0,09 0,08 0,09 0,08 0,08 0,15
Диоксид серы 0,002 0,002 0,002 0,001 0,002 0,05
Оксид углерода 3,0 2,0 2,0 2,0 2,0 3,0
Диоксид азота 0,06 0,06 0,06 0,04 0,04 0,04
Оксид азота 0,05 0,01 0,01 0,03 0,03 0,06
Сероводород 0,001 0,001 0,001 0,001 0,001 -
Гидрофторид 0,001 0,001 0,001 0,002 0,002 0,005
Аммиак 0,02 0,01 0,02 0,01 0,02 0,04
Фенол 0,004 0,003 0,003 0,002 0,001 0,003
Формальдегид 0,026 0,022 0,019 0,016 0,015 0,003
Гидрохлорид 0,004 0,003 0,003 0,002 0,002 0,01

В течение последних пяти лет прослеживалась тенденция снижения уровня загрязненияатмосферного воздуха города фенолом, формальдегидом, диоксидом азота, бенз(а)пиреном.

Измерения концентраций примесей проводят как в районе действия конкретного источника загрязнения атмосферы, так и на некотором удалении от него.

Для определения максимальных значений концентраций загрязняющих веществ, которые создаются при направленных выбросах от предприятий на тот или иной район города, а также размера зоны распространения примесей от данного предприятия организуются подфакельные наблюдения . Подфакельными наблюдениями называются измерения концентраций примесей под осью факела выбросов из труб промышленных предприятий. Местоположение точек, в которых производится отбор проб воздуха для определения концентраций вредных веществ, меняется в зависимости от направления факела. Подфакельные наблюдения проводятся в районе отдельно стоящего источника выбросов или группы источников как на территории города, так и за его пределами с помощью передвижных станций наблюдения.

Измерения концентраций проводятся по оси факела на различных расстояниях от источника выброса и в точках слева и справа от линии, перпендикулярной оси факела. Наблюдения следует проводить на расстояниях 1040 средних высот труб от источника, где особенно велика вероятность появления максимума концентраций. Такой вид обследования позволяет проследить изменение концентрации с увеличением расстояния от источника выброса, определить вклад в локальный уровень загрязнения низких и высоких источников выбросов и др.

Схема мониторинга атмосферного воздуха включает как первичное звено санитарно-промышленные и аналитические лаборатории предприятий, которые проводят «точечный» мониторинг атмосферного воздуха (воздух рабочей зоны ) на территории непосредственно предприятия-загрязнителя. Контроль за качеством воздуха проводится также внутри цехов и рабочих помещений и зачастую дополняет производственный технологический контроль.

С целью контроля качества воздуха «точечный» мониторинг источников выбросов («подфакельные» наблюдения), и околопромышленных районов проводится также органами Санэпиднадзора (СЭН) и Госкомэкологии (ГЭК) или Минприроды. Кроме того, ГЭК и СЭН проводят локальный мониторинг воздуха в жилых кварталах, на крупных автомагистралях внутри города, в основном в наименее благополучных по экологической ситуации районах.

Федеральная служба России по гидрометеорологии и мониторингу окружающей среды (Росгидромет) и ее территориальные органы осуществляют непрерывный контроль за качеством атмосферного воздуха в населенных пунктах (локальный, региональный и национальный уровни) с целью определения основных фоновых показателей загрязнения атмосферы, решения вопросов трансграничного переноса загрязняющих веществ и выявления высоких и экстремально высоких уровней загрязнения. В системе Росгидромета наблюдения за загрязнением атмосферы регулярно проводятся в 238 городах России на 649 стационарных постах. Измеряются концентрации от 5 до 25 загрязняющих веществ.

Обследование состояния загрязнения атмосферы в городе или крупном районе организуется для выяснения причин высоких уровней концентраций примесей, установления их неблагоприятного влияния на здоровье населения и окружающую среду и для разработки мероприятий по охране атмосферного воздуха.

В зависимости от целей различают три вида обследования:

    эпизодическое – для ориентировочной оценки состояния загрязнения воздуха в населенном пункте и при выборе мест для размещения постов наблюдений;

    комплексное – для детального изучения особенностей и причин высокого уровня загрязнения, его влияния на здоровье населения и окружающую среду в целом, а также для разработки рекомендаций по проведению атмосфероохранных мероприятий;

    оперативное – для выявления причин резкого ухудшения качества воздуха.

В зависимости от вида обследования составляется программа обследования. На основании обобщенных результатов обследования разрабатываются конкретные рекомендации по проведению атмосфероохранных мероприятий и делается вывод о необходимости организации регулярных наблюдений при их отсутствии.

Так, эпизодическое обследование проводится при отсутствии регулярных наблюдений за загрязнением атмосферы и его результаты являются основанием для определения целесообразности проведения регулярных наблюдений. При разработке атмосфероохранных мероприятий для отдельного города или крупного промышленного района необходимо детальное изучение состояния загрязнения атмосферы, которое осуществляется на основании комплексного обследования.

Целями комплексного обследования являются:

    выделение районов, подверженных влиянию определенных источников загрязнения;

    изучение распределения по территории содержания загрязняющих веществ, особенно не контролируемых систематически;

    уточнение правильности расчетов нормативов ПДВ;

    изучение особенностей переноса загрязняющих веществ, содержащихся в выбросах, за пределы исследуемой территории;

    изучение взаимного влияния отдельных источников загрязнения на исследуемый район.

В ходе комплексного обследования изучаются:

1) физико-географические характеристики исследуемого района с указанием рельефа местности, наличия водных объектов, растительных массивов (для определения количества точек наблюдения и расстояния между ними);

2) климатические условия распространения примесей в атмосфере (для определения метеопараметров, за которыми должны проводится наблюдения, определения сроков проведения наблюдений);

3) техногенные параметры стационарных и передвижных источников загрязнения атмосферы (для определения перечня предприятий и автомагистралей, подлежащих обследованию, определения приоритетного перечня веществ, подлежащих контролю).