Чем определяется категория молниезащиты зданий и сооружений. Электроэнергетика главное. Пути разработки безопасных, надежных и эффективных промышленных подстанций

В соответствии с «Инструкцией по устройству молниезащиты зданий и сооружений» (РД 34.12.122 – 87) в зависимости от взрывопожа-роопасности объектов, среднегодовой продолжительности гроз, а также от ожидаемого количества поражений молнией в год устанавливаются 3 кате­гории устройства молниезащиты и 2 типа (А, Б) зон защиты объектов от прямых ударов молнии.

Степень взрывопожароопасности объектов оценивается по класси­фикации зон по «Правилам устройства электроустановок» (ПУЭ) .

К первой категории относятся объекты с взрывоопасными зонами классов В-I, В-II независимо от места расположения объекта и от интен­сивности грозовой деятельности. Тип зоны защиты объектов от прямых ударов молнии А (т.е. обеспечивает перехват на пути к защищаемому объ­екту не менее 99,5 % прямых ударов молнии).

По второй категории осуществляется защита объектов, относимых по классификации по ПУЭ к взрывоопасным зонам классов В-Iа, В-Iб и В-IIа в местностях со средней продолжительностью гроз 10 часов в год и более. Тип зоны защиты определяется по ожидаемому количеству пора­жений объекта молнией в год (при N > 1 должна обеспечиваться зона за­щиты А, при N ≤ 1 – зона защиты Б (перехват не менее 95 % прямых уда­ров молнии).

Наружные установки, отнесенные согласно ПУЭ к зоне класса В-Iг, независимо от места расположения и интенсивности грозовой деятельно­сти относятся ко второй категории с зоной защиты Б.

По третьей категории организуется защита объектов, относимых по ПУЭ к пожароопасным зонам классов П-I, П-II, П-IIа при расположении объектов в местностях со средней грозовой деятельностью 20 часов в год и более. При ожидаемом количестве поражений в год N > 2 должна обеспе­чиваться зона защиты типа А, в остальных случаях – типа Б. По третьей


категории производится защита наружных установок и открытых складов, отнесенных согласно ПУЭ к зоне класса ПIII, а также общественных и жи­лых зданий, башен, вышек, труб предприятий.

Здания и сооружения, отнесенные по устройству молниезащиты к первой и второй категориям, должны быть защищены от прямых ударов молнии, электростатической и электромагнитной индукции и заноса вы­соких потенциалов через наземные и подземные металлические комму­никации.

Здания и сооружения, отнесенные по устройству молниезащиты к третьей категории, должны быть защищены от прямых ударов молнии и заноса высоких потенциалов через наземные металлические конструкции.

Объекты первой категории молниезащиты защищают от прямых ударов молнии отдельно стоящими стержневыми, тросовыми молниеотво­дами или молниеотводами, устанавливаемыми на защищаемом объекте, но электрически изолированными от него. Импульсное электросопротивление заземлителя для каждого токоотвода на объектах первой категории защиты должно быть не более 10 Ом.


Для защиты от ударов молнии объектов второй категории применя­ют отдельно стоящие или установленные на защищаемом объекте не изо­лированные от него стержневые и тросовые молниеотводы. Допускается использование в качестве молниеприемника металлической кровли здания или молниеприемной сетки (из проволоки диаметром 6 – 8 мм и ячейками 6 ´ 6 м), накладываемой на неметаллическую кровлю. Импульсное сопро­тивление каждого заземлителя должно быть не более 10 Ом.

Наружные установки, отнесенные по устройству молниезащиты ко второй категории, должны быть защищены от прямых ударов молнии и электростатической индукции.

Для защиты от прямых ударов молнии заглубленных в землю резервуаров разрешается использовать магниевые протекторы, пред­назначенные для защиты от коррозии, с выполнением следующих ус­ловий:

1) стальной стержень протектора и присоединяемый к нему провод­ник токоотвода должны иметь диаметр не менее 6 мм, а при высокой аг­рессивности грунтов – не менее 8 мм и быть оцинкованными;

2) соединение стержня протектора и проводника токоотвода должно быть выполнено сваркой внахлест на длину, равную не менее шести диа­метров проводника;

3) импульсное сопротивление растеканию тока заземлителя должно быть не менее 50 Ом.


Для защиты резервуаров от электромагнитной индукции все подве­денные к резервуару трубопроводы, кабели в металлическом корпусе и другие протяженные металлические конструкции, расположенные друг от друга на расстоянии 10 см и менее, должны быть соединены через каждые 25 – 30 м металлическими перемычками установленного сечения.

Для предотвращения заноса высоких потенциалов в резервуар по трубопроводам и другим коммуникациям последние необходимо в месте ввода их в резервуары присоединить к одному из заземлителей резервуара.

Наружные металлические установки, содержащие взрывоопас­ные газы, пары, легковоспламеняющиеся жидкости (установки класса В-Iг), а также сжиженные газы, должны быть защищены от прямых ударов молнии следующим образом:

а) корпуса установок или отдельных емкостей при толщине металла
крыши менее 4 мм должны быть защищены молниеотводами, установлен­
ными отдельно или на самом сооружении;

б) корпуса установок или отдельных емкостей при толщине металла
крыши 4 мм и более, а также отдельные емкости объемом менее 200 м³ не­
зависимо от толщины металла крыши достаточно присоединить к заземли-
телям.

Наружные установки класса В-Iг с корпусами из железобетона должны быть защищены от прямых ударов молнии отдельно стоящими или установленными на них молниеотводами.

Для наружных установок со сжиженными газами при объеме парка резервуаров более 8000 м³, а также для наружных парков резервуаров класса В-Iг с корпусами из металла и железобетона при общем объеме парка более 100 тыс. м³ защиту от прямых ударов молнии следует, как правило, выполнять отдельно стоящими молниеотводами; допускается в экономически обоснованных случаях защита молниеотводами, установ­ленными на самих резервуарах. При защите металлических резервуаров отдельно стоящими молниеотводами корпуса резервуаров должны быть присоединены к заземлителям, и к этим же заземлителям допускается при­соединение токоотводов отдельно стоящих молниеотводов.

Парки подземных железобетонных резервуаров класса В-Iг, не обли­цованных изнутри металлическим листом, должны быть защищены от прямых ударов молнии отдельно стоящими молниеотводами. В зону защи­ты этих молниеотводов должно входить пространство, основание которого выходит за пределы резервуарного парка на 40 м от стенок крайних резер­вуаров в каждую сторону, а высота должна быть равна высоте газоотвод-


ных или дыхательных клапанов плюс 2,5 м. Парки подземных железобе­тонных резервуаров, содержащих мазут, при подмешивании к нему легких углеводородов и при подогреве также должны быть защищены от прямых ударов молнии отдельно стоящими молниеотводами, в зону защиты кото­рых должно входить пространство с основанием, совпадающим с террито­рией резервуарного парка, и высотой, равной высоте газоотводных или дыхательных клапанов плюс 2,5 м.

Очистные сооружения должны быть защищены от прямых ударов молнии отдельно стоящими или установленными на сооружениях молние­отводами, если температура вспышки продукта превышает его рабочую температуру менее чем на 10 ºС. В зону защиты молниеотводов должно входить пространство, ограниченное параллелепипедом, основание кото­рого выходит за пределы очистного сооружения на 5 м в каждую сторону от его стенок, а высота равна высоте сооружения плюс 3 м.

Если на наружных установках или емкостях класса В-Iг или на под­земных железобетонных резервуарах, облицованных изнутри металличе­ским листом, имеются газоотводные или дыхательные трубы, то они и пространство над ними должны быть защищены от прямых ударов мол­нии. Такое же пространство должно быть защищено над срезом горловин цистерн, в которые производят открытый налив продукта на сливно-наливной эстакаде. Защите от прямых ударов молнии подлежат имеющие­ся на установках и емкостях класса В-Iг дыхательные клапаны и простран­ство над ними, ограниченное цилиндром высотой 2,5 м и радиусом 5 м.

Эти газоотводные и дыхательные трубы, а также дыхательные клапаны могут служить опорными конструкциями для установки молниеотводов.

Для наружных установок заземлители защиты от прямых ударов молнии должны иметь импульсное сопротивление не более 50 Ом на каж­дый токоотвод и к ним должны быть присоединены молниеотводы, метал­лические корпуса и другие металлические конструкции установок.

Присоединение к заземлителям должно осуществляться не более чем через 50 м по периметру основания установки. При этом число присоеди­нений должно быть не менее двух.

2.4. Расчет количества поражений объекта молнией в течение года (N )

Исходными данными для расчета количества поражений (N ) молнией в год являются:

– среднегодовая продолжительность гроз в часах в месте расположе­ния объекта;

– наибольшая высота здания или сооружения, h , м;


– ширина здания, s , м;

– длина здания, l , м;

– среднегодовое число ударов молнии в 1 км² земной поверхности (удельная плотность ударов молнии в землю), n.

Среднегодовая продолжительность гроз в часах определяется по кар­те (РД 34.21.122 –87) или по утвержденным региональным картам продол­жительности гроз, или по средним многолетним данным метеонаблюдений (в течение 10 лет).

Определив среднегодовую продолжительность гроз, находим удель­ную плотность ударов молнии в землю n , 1/(кмІ/год) (табл. 6).

Таблица 6 Удельная плотность ударов молнии

Организацию молниезащиты зданий и сооружений регулируют ПУЭ 7 (Правила устройства электроустановок в 7-я редакции). Скачайте их, а также инструкцию по оборудованию защиты от молний.

Читайте в нашей статье:

Что устанавливают ПУЭ 7 в части молниезащиты зданий и сооружений

Действующая в данный момент версия ПУЭ была утверждена . Предохранению объектов от воздействия электрического заряда посвящены две главы: 7.3.142-3 и 4.2.133. Первая устанавливает порядок защиты объектов от грозовых разрядов и статического электричества. В ней содержится ссылка на инструкцию РД 34.21.122-87. Глава 4.2.133 посвящена защите электрических подстанций и распределительных устройств от перенапряжений, которые могут быть вызваны ударом молнии.

Виды и устройство защиты от грозовых перенапряжений

Если говорить о классификации устройств защиты от грозовых перенапряжений, то помимо ПУЭ нужно будет ознакомиться со следующими инструкциями и государственными стандартами:

  • РД 34.21.122-87 «Инструкция по устройству молниезащиты зданий и сооружений»;
  • СО 153-34.21.122-2003 «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций»;
  • ГОСТ Р МЭК 62305-1-2010 «Менеджмент риска. Защита от молнии. Часть 1»;
  • «Менеджмент риска. Защита от молнии. Часть 2».

Выделяют несколько вариантов молниезащитных систем:

  • Активная, то есть искусственно притягивающая к себе разряды молнии, используя для этого встроенный ионизатор.
  • Пассивная – наиболее распространенная защита. Молния не во всех случаях попадает в такие отводы, но этот недостаток перекрывается низкой стоимостью таких устройств, а также их высокой надежностью.

Также различают внешний и внутренний типы защитных устройств.

К внешним относятся сетчатые молниеприемники, молниеприемные стержни, натянутые молниеприемные тросы. Все они работают по одному принципу, перехватывая разряд и отводя его в грунт. При ударе молнии молниеотвод принимает на себя разряд, по спускам отводит ток в землю, где он полностью рассеивается. Безопасность также обеспечивает заземлитель, состоящий из токопроводящих материалов.

Предохранительные системы внутреннего типа, состоящие из ряда устройств защиты от импульсных перенапряжений (УЗИП), имеют другую функцию. Их задача – защитить бытовые приборы от перенапряжения в электросети, которое может быть вызвано ударом молнии. При этом разряд может попасть как в само здание, так и в непосредственной близости от него или .

Информацию об устройстве таких систем вы найдете в статье «Молниезащита: как устроена и зачем нужна»

Категории молниезащиты зданий

Согласно действующим стандартам, существует три категории молниезащиты зданий и сооружений. Причисление к ним зависит от ряда факторов: значимости объекта, частоты гроз в регионе, зафиксированных попаданий молний в здание.

Промышленные объекты со взрывоопасными зонами получают максимальный уровень защиты – первый. При этом не имеет значения, где именно располагается сооружение, и насколько интенсивными бывают грозы на этой территории. Главное назначение защитных устройств – перехват прямого удара молнии на пути к объекту.

Сюда также включают здания, в которых хранятся взрывоопасные вещества. Это могут быть открытые склады с , наружные технологические установки. Системы молниезащиты на таких объектах должны защищать от прямого попадания разряда, электромагнитной индукции и от заноса потенциалов через коммуникации.

  • Эксплуатация зданий и сооружений – нормативные документы

К этому типу относятся постройки на территориях, где грозы длятся более 20 часов в год. Отводы и заземлители должны предохранять от прямого попадания молнии и от заноса высокого потенциала.

В тех случаях, когда кровля здания служит естественным молниеприемником, а само помещение не содержит взрывоопасных веществ и выполнено из несгораемых материалов, отдельные устройства молниезащиты не потребуются.

Устройство молниезащиты в зависимости от категории (по ПУЭ 7)

Объекты первой категории молниезащиты необходимо оснащать самыми сложными предохранительными системами. Такие здания должны быть оборудованы стоящими отдельно друг от друга тросовыми, либо стержневыми молниеотводами.

В зависимости от типа оборудования нужно подбирать соответствующий заземлитель. Здесь возможно несколько вариантов:

  • Один подножник из железобетона, длина которого не менее 1,8 метров. Вместе с ним одна железобетонная свая, длина которой должна достигать порядка 6 метров.
  • Одна опора диаметром не менее 0,5 м, сделанная из железобетона. При этом ее следует заглубить в землю не менее чем на 6 метров.
  • Фундамент из железобетона, площадь поверхности контакта с землей которого довольно обширна. При этом фундамент может быть различенной формы.
  • Искусственный заземлитель, который будет состоять из нескольких объединенных электродов.

Защиту зданий и сооружений второй/третьей категорий выполняют в формате молниеприемной сетки с определенным шагом ячейки. Также должны присутствовать отдельно стоящие или смонтированные на защищаемом объекте стержневые, либо тросовые молниеприемники.

ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ МОЛНИЕЗАЩИТЫ ЗДАНИЙ И СООРУЖЕНИЙ

2.1. Защита от прямых ударов молнии зданий и сооружений, относимых по устройству молниезащиты к I категории, должна выполняться отдельно стоящими стержневыми (рис. 1) или тросовыми (рис. 2) молниеотводами.

Рис. 1. Отдельно стоящий стержневой молниеотвод:

1 - защищаемый объект; 2 - металлические коммуникации

Рис. 2. Отдельно стоящий тросовый молниеотвод. Обозначения те же, что и на рис. 1

Указанные молниеотводы должны обеспечивать зону защиты типа А в соответствии с требованиями приложения 3. При этом обеспечивается удаление элементов молниеотводов от защищаемого объекта и подземных металлических коммуникаций в соответствии с ïï. 2.3, 2.4, 2.5.

2.2. Выбор заземлителя защиты от прямых ударов молнии (естественного или искусственного) определяется требованиями п. 1.8.

При этом для отдельно стоящих молниеотводов приемлемыми являются следующие конструкции заземлителей (табл. 2) :

а) один (и более) железобетонный подножник длиной не менее 2 м или одна (и более) железобетонная свая длиной не менее 5 м;

б) одна (и более) заглубленная в землю не менее чем на 5 м стойка железобетонной опоры диаметром не менее 0,25 м;

в) железобетонный фундамент произвольной формы с площадью поверхности контакта с землей не менее 10 м 2 ;

г) искусственный заземлитель, состоящий из трех и более вертикальных электродов длиной не менее 3 м, объединенных горизонтальным электродом, при расстоянии между вертикальными электродами не менее 5 м. Минимальные сечения (диаметры) электродов определяются по табл. 3.

Таблица 2

Таблица 3

2.3. Наименьшее допустимое расстояние S в по воздуху от защищаемого объекта до опоры (токоотвода) стержневого или тросового молниеотвода (см. рис. 1 и 2) определяется в зависимости от высоты здания, конструкции заземлителя и эквивалентного удельного электрического сопротивления грунта r, Ом×м.

Для зданий и сооружений высотой не более 30 м наименьшее допустимое расстояние S в, м, равно:

при r < 100 Ом×м для заземлителя любой конструкции, приведенной в п. 2.2, S в = 3 м;

при 100< r £ 1000 Ом×м:

для заземлителей, состоящих из одной железобетонной сваи, одного железобетонного подножника или заглубленной стойки железобетонной опоры, длина которых указана в п. 2.2а, б, S в = 3+ l0 -2 (r-100);

для заземлителей, состоящих из четырех железобетонных свай либо, подножников, расположенных в углах прямоугольника на расстоянии 3-8 м один от другого, или железобетонного фундамента произвольной формы с площадью поверхности контакта с землей не менее 70 м 2 или искусственных заземлителей, указанных в п. 2.2г, S в = 4 м.

Для зданий и сооружений большей высоты определенное выше значение S в должно быть увеличено на 1 м в расчете на каждые 10 м высоты объекта сверх 30 м.

2.4. Наименьшее допустимое расстояние S в от защищаемого объекта до троса в середине пролета (рис. 2) определяется в зависимости от конструкции заземлителя, эквивалентного удельного сопротивления грунта r, Ом×м, и суммарной длины l молниеприемников и токоотводов.

При длине l < 200 м наименьшее допустимое расстояние S в1 , м, равно:

при r < 100 Ом×м для заземлителя любой конструкции, приведенной в п. 2.2, S в1 =3,5 м;

при 100 < r £ 1000 Ом×м:

для заземлителей, состоящих из одной железобетонной сваи, одного железобетонного подножника или заглубленной стойки железобетонной опоры, длина которых указана в п. 2.2a, б, S в =3,5+3×10 -3 (r-100);

для заземлителей, состоящих из четырех железобетонных свай или подножников, расположенных на расстоянии 3-8 м один от другого, или искусственных заземлителей, указанных в п. 2.2г, S в1 =4м.

При суммарной длине молниеприемников и токоотводов l =200-300 м наименьшее допустимое расстояние S в1 должно быть увеличено на 2 м по сравнению с определенными выше значениями.

2.5. Для исключения заноса высокого потенциала в защищаемое здание или сооружение но подземным металлическим коммуникациям (в том числе по электрическим кабелям любого назначения) заземлители защиты от прямых ударов молнии должны быть по возможности удалены от этих коммуникаций на максимальные расстояния, допустимые по технологическим требованиям. Наименьшие допустимые расстояния S з, (см. рис. 1 и 2) в земле между заземлителями защиты от прямых ударов молнии и коммуникациями, вводимыми в здания и сооружения 1 категории, должны составлять S з = S в + 2 (м), при S в по п. 2.3.

2.6. При наличии на зданиях и сооружениях прямых газоотводных и дыхательных труб для свободного отвода в атмосферу газов, паров и взвесей взрывоопасной концентрации в зону защиты молниеотводов должно входить пространство над обрезом труб, ограниченное полушарием радиусом 5 м.

Для газоотводных и дыхательных труб, оборудованных колпаками или "гусаками", в зону защиты молниеотводов должно входить пространство над обрезом труб, ограниченное цилиндром высотой Н и радиусом R:

для газов тяжелее воздуха при избыточном давлении внутри установки менее 5,05 кПа (0,05 ат) Н = 1 ì, R = 2 м; 5,05-25,25 кПа (0,05 - 0,25 ат) H = 2,5 м, R = 5 м,

для газов легче воздуха при избыточном давлении внутри установки:

до 25,25 кПа H = 2,5 м, R = 5 м;

свыше 25,25 кПа H = 5 м, R = 5 м.

Не требуется включать в зону защиты молниеотводов пространство над обрезом труб: при выбросе газов невзрывоопасной концентрации; наличии азотного дыхания; при постоянно горящих факелах и факелах, поджигаемых в момент выброса газов; для вытяжных вентиляционных шахт, предохранительных и аварийных клапанов, выброс газов взрывоопасной концентрации из которых осуществляется только в аварийных случаях.

2.7. Для защиты от вторичных проявлений молнии должны быть предусмотрены следующие мероприятия:

а) металлические конструкции и корпуса всего оборудования и аппаратов, находящиеся в защищаемом здании, должны быть присоединены к заземляющему устройству электроустановок, указанному в п. 1.7, или к железобетонному фундаменту здания (с учетом требований п. 1.8). Наименьшие допустимые расстояния в земле между этим заземлителем и заземлителями защиты от прямых ударов молнии должны быть в соответствии с п. 2.5;

б) внутри зданий и сооружений между трубопроводами и другими протяженными металлическими конструкциями в местах их взаимного сближения на расстояние менее 10 см через каждые 20 м следует приваривать или припаивать перемычки из стальной проволоки диаметром не менее 5 мм или стальной ленты сечением не менее 24 мм 2 , для кабелей с металлическими оболочками или броней перемычки должны выполняться из гибкого медного проводника в соответствии с указаниями СНиП 3.05.06-85;

в) в соединениях элементов трубопроводов или других протяженных металлических предметов должны быть обеспечены переходные сопротивления не более 0,03 Ом на каждый контакт. При невозможности обеспечения контакта с указанным переходным сопротивлением с помощью болтовых соединений необходимо устройство стальных перемычек, размеры которых указаны в подпункте "б".

2.8. Защита от заноса высокого потенциала по подземным металлическим коммуникациям (трубопроводам, кабелям в наружных металлических оболочках или трубах) должна осуществляться путем их присоединения на вводе в здание или сооружение к арматуре его железобетонного фундамента, а при невозможности использования последнего в качестве заземлителя - к искусственному заземлителю, указанному в п. 2.2 г.

2.9. Защита от заноса высокого потенциала по внешним наземным (надземным) металлическим коммуникациям должна осуществляться путем их заземления на вводе в здание или сооружение и на двух ближайших к этому вводу опорах коммуникации. В качестве заземлителей следует использовать железобетонные фундаменты здания или сооружения и каждой из опор, а при невозможности такого использования (см. п. 1.8) - искусственные заземлители, согласно п. 2.2г.

2.10. Ввода здания воздушных линий электропередачи напряжением до 1 кВ, сетей телефона, радио, сигнализации должен осуществляться только кабелями длиной не менее 50 м с металлической броней или оболочкой или кабелями, проложенными в металлических трубах.

На вводе в здание металлические трубы, броня и оболочки кабелей, в том числе с изоляционным покрытием металлической оболочки (например, ААШв, ААШп) , должны быть присоединены к железобетонному фундаменту здания или (см. п. 1.8) к искусственному заземлителю, указанному в п. 2.2г.

В месте перехода воздушной линии электропередачи в кабель металлические броня и оболочка кабеля, а также штыри или крючья изоляторов воздушной линии должны быть присоединены к заземлителю, указанному в п. 2.2г. К такому же заземлителю должны быть присоединены штыри или крючья изоляторов на опоре воздушной линии электропередачи, ближайшей к месту перехода в кабель.

Кроме того, в месте перехода воздушной линии электропередачи в кабель между каждой жилой кабеля и заземленными элементами должны быть обеспечены закрытые воздушные искровые промежутки длиной 2-3 мм èëè установлен вентильный разрядник низкого напряжения, например РВН-0,5.

Защита от заноса высоких потенциалов по воздушным линиям электропередачи напряжением выше 1 кВ, вводимым в подстанции, размещенные в защищаемом здании (внутрицеховые или пристроенные), должна выполняться в соответствии с ПУЭ.

2.11. Защита îò прямых ударов молнии зданий и сооружений II категории с неметаллической кровлей должна быть выполнена отдельно стоящими или установленными на защищаемом объекте стержневыми или тросовыми молниеотводами, обеспечивающими зону защиты в соответствии с требованиями табл. 1, п. 2.6 и приложения 3. При установке молниеотводов на объекте от каждого стержневого молниеприемника или каждой стойки тросового молниеприемника должно быть обеспечено не менее двух токоотводов. При уклоне кровли не более 1:8 может быть использована также молниеприемная сетка при обязательном выполнении требований п. 2.6.

Молниеприемная сетка должна быть выполнена из стальной проволоки диаметром не менее 6 мм и уложена на кровлю сверху или под несгораемые или трудносгораемые утеплитель или гидроизоляцию. Шаг ячеек сетки должен быть не более 6х6 м. Узлы сетки должны быть соединены сваркой. Выступающие над крышей металлические элементы (трубы, шахты, вентиляционные устройства) должны быть присоединены к молниеприемной сетке, а выступающие неметаллические элементы - оборудованы дополнительными молниеприемниками, также присоединенными к молниеприемной сетке.

Установка молниеприемников или наложение молниеприемной сетки не требуется для зданий и сооружений с металлическими фермами при условии, что в их кровлях используются несгораемые или трудносгораемые утеплители и гидроизоляция.

На зданиях и сооружениях с металлической кровлей в качестве молниеприемника должна использоваться сама кровля. При этом все выступающие неметаллические элементы должны быть оборудованы молниеприемниками, присоединенными к металлу кровли, в. также соблюдены требования п. 2.6.

Токоотводы от металлической кровли или молниеприемной сетки должны быть проложены к заземлителям не реже чем через 25 м по периметру здания.

2.12. При прокладке молниеприемной сетки и установке молниеотводов на защищаемом объекте всюду, где это возможно, в качестве токоотводов следует использовать металлические конструкции зданий и сооружений (колонны, фермы, рамы, пожарные лестницы и т.п., а также арматуру железобетонных конструкции) при условии обеспечения непрерывной электрической связи в соединениях конструкций и арматуры с молниеприемниками и заземлителями, выполняемых, как правило, сваркой.

Токоотводы, прокладываемые по наружным стенам зданий, следует располагать не ближе чем в 3м от входов или в местах, не доступных для прикосновения людей.

2.13. В качестве заземлителей защиты от прямых ударов молнии во всех возможных случаях (см. п. 1.8) следует использовать железобетонные фундаменты зданий и сооружений.

При невозможности использования фундаментов предусматриваются искусственные заземлители:

при наличии стержневых и тросовых молниеотводов каждый токоотвод присоединяется к заземлителю, отвечающему требованиям п. 2.2г;

при наличии молниеприемной сетки или металлической кровли по периметру здания или сооружения прокладывается наружный контур следующей конструкции:

в грунтах с эквивалентным удельным сопротивлением r £ 500 Ом×м при площади здания более 250 м 2 выполняется контур из горизонтальных электродов, уложенных в земле на глубине не менее 0,5 м, а при площади здания менее 250 м 2 к этому контуру в местах присоединения токоотводов приваривается по одному вертикальному или горизонтальному лучевому электроду длиной 2-3 м;

в грунтах с удельным сопротивлением 500 < r £ 1000 Ом×м при площади здания более 900 м 2 достаточно выполнить контур только из горизонтальных электродов, а при площади здания менее 900 м 2 к этому контуру в местах присоединения токоотводов приваривается не менее двух вертикальных или горизонтальных лучевых электродов длиной 2-3 м на расстоянии 3-5 м один от другого.

В зданиях большой площади наружный контур заземления может также использоваться для выравнивания потенциала внутри здания в соответствии с требованиями п. 1.9.

Во всех возможных случаях заземлитель защиты от прямых ударов молнии должен быть объединен с заземлителем электроустановок в соответствии с указаниями п. 1.7.

2.14. При установке отдельно стоящих молниеотводов расстояние от них по воздуху и в земле до защищаемого объекта и вводимых в него подземных коммуникаций не нормируется.

2.15. Наружные установки, содержащие горючие и сжиженные газы и легковоспламеняющиеся жидкости, следует защищать от прямых ударов молнии следующим образом:

а) корпуса установок из железобетона, металлические корпуса установок и отдельных резервуаров при толщине металла крыши менее 4 мм должны быть оборудованы молниеотводами, установленными на защищаемом объекте или отдельно стоящими;

б) металлические корпуса установок и отдельных резервуаров при толщине металла крыши 4 мм и более, а также отдельные резервуары вместимостью менее 200 м 3 независимо от толщины металла крыши, а также металлические кожухи теплоизолированных установок достаточно присоединить к заземлителю.

2.16. Для резервуарных парков, содержащих сжиженные газы, общей вместимостью более 8000 м 3 , а также для резервуарных парков с корпусами из металла и железобетона, содержащих горючие газы и легковоспламеняющиеся жидкости, при общей вместимости группы резервуаров более 100 тыс. м 3 защиту от прямых ударов молнии следует, как правило, выполнять отдельно стоящими молниеотводами.

2.17. Очистные сооружения подлежат защите от прямых ударов молнии, если температура вспышки содержащегося в сточных водах продукта превышает его рабочую температуру менее чем на 10 °С. В зону защиты молниеотводов должно входить пространство, основание которого выходит за пределы очистного сооружения на 5 м в каждую сторону от его стенок, а высота равна высоте сооружения плюс 3 м.

2.18. Если на наружных установках или в резервуарах (наземных или подземных), содержащих горючие газы или легковоспламеняющиеся жидкости, имеются газоотводные или дыхательные трубы, то они и пространство над ними (см. п. 2.6) должны быть защищены от прямых ударов молнии. Такое же пространство защищается над срезом горловины цистерн, в которые происходит открытый налив продукта на сливоналивной эстакаде. Защите от прямых ударов молнии подлежат также дыхательные клапаны и пространство над ними, ограниченное цилиндром высотой 2,5 м с радиусом 5 м.

Для резервуаров с плавающими крышами или понтонами и зону защиты молниеотводов должно входить пространство, îãðàíè÷åííîå поверхностью, любая точка которой отстоит на 5 м от легковоспламеняющейся жидкости в кольцевом зазоре.

2.19. Для наружных установок, перечисленных в пп. 2.15 - 2.18, в ткачестве заземлителей защиты от прямых ударов молнии следует по возможности использовать железобетонные фундаменты этих установок или (опор отдельно стоящих молниеотводов либо выполнять искусственные заземлители, состоящие из одного вертикального или горизонтального электрода длиной не менее 5 м.

К этим заземлителям, размещенным не реже чем через 50 м по периметру основания установки, должны быть присоединены корпуса наружных установок или токоотводы установленных на них молниеотводов, число присоединений - не менее двух.

2.20. Для защиты зданий и сооружений от вторичных проявлений молнии должны быть предусмотрены следующие мероприятия:

а) металлические корпуса всего оборудования и аппаратов, установленных в защищаемом здании (сооружении), должны быть присоединены к заземляющему устройству электроустановок, соответствующему указаниям п. 1.7, или к железобетонному фундаменту здания (с учетом требований п. 1.8) ;

б) внутри здания между трубопроводами и другими протяженными металлическими конструкциями в местах их сближения на расстояние менее 10 см через каждые 30 м должны быть выполнены перемычки в соответствии с указаниями п. 2.76;

в) во фланцевых соединениях трубопроводов внутри здания следует обеспечить нормальную затяжку не менее четырех болтов на каждый фланец.

2.21. Для защиты наружных установок от вторичных проявлений молнии металлические корпуса установленных на них аппаратов должны быть присоединены к заземляющему устройству электрооборудования или к заземлителю защиты от прямых ударов молнии.

На резервуарах с плавающими крышами или понтонами необходимо устанавливать не менее двух гибких стальных перемычек между плавающими крышами или понтонами и металлическим корпусом резервуара или токоотводами установленных на резервуаре молниеотводов.

2.22. Защита от заноса высокого потенциала по подземным коммуникациям осуществляется присоединением их на вводе в здание или сооружение к заземлителю электроустановок или защиты от прямых ударов молнии.

2.23. Защита от заноса высокого потенциала по внешним наземным (надземным) коммуникациям выполняется путем их присоединения на вводе в здание или сооружение к заземлителю электроустановок или защиты от прямых ударов молнии, а на ближайшей к вводу опоре коммуникации - к ее железобетонному фундаменту. При невозможности использования фундамента (см. п. 1.8) должен быть установлен искусственный заземлитель, состоящий из одного вертикального или горизонтального электрода длиной не менее 5 м.

2.24. Защита от заноса высокого потенциала по воздушным линиям электропередачи, сетям телефона, радио и сигнализации должна быть выполнена в соответствии с п. 2.10.

2.25. Защита от прямых ударов молнии зданий и сооружений, относимых по устройству молниезащиты к III категории, должна выполняться одним из способов, указанных в п. 2.11, с соблюдением требований пп. 2.12 и 2.14.

При этом в случае использования молниеприемной сетки шаг ее ячеек должен быть не более 12 х 12м.

2.26. Во всех возможных случаях (см. п. 1.7) в качестве заземлителей защиты от прямых ударов молнии следует использовать железобетонные фундаменты зданий и сооружений.

При невозможности их использования выполняют искусственные заземлители:

каждый токоотвод от стержневых и тросовых молниеприемников должен быть присоединен к заземлителю, состоящему минимум из двух вертикальных электродов длиной не менее 3 м, объединенных горизонтальным электродом длиной не менее 5 м;

при использовании в качестве молниеприемников сетки или металлической кровли по периметру здания в земле на глубине не менее 0,5 м должен быть проложен наружный контур, состоящий из горизонтальных электродов. В грунтах с эквивалентным удельным сопротивлением 500 < r £ 1000 Ом×м и при площади здания менее 900 м 2 к этому контуру в местах присоединения токоотводов следует приваривать по одному вертикальному или горизонтальному лучевому электроду длиной 2-3 м.

Минимально допустимые сечения (диаметры) электродов искусственных заземлителей определяются по табл. 3.

В зданиях большой площади (шириной более 100 м) наружный контур заземления может также использоваться для выравнивания потенциалов внутри здания в соответствии с требованиями п. 1.9.

Во всех возможных случаях заземлитель защиты от прямых ударов молнии должен быть объединен с заземлителем электроустановки, указанным в гл. 1.7 ПУЭ.

2.27. При защите строений для крупного рогатого скота и конюшен отдельно стоящими молниеотводами их опоры и заземлители следует располагать не ближе чем в 5м от входа в строения.

При установке молниеприемников или укладке сетки на защищаемом стрости в качестве заземлителей следует использовать железобетонный фундамент (см. п. 1.8) или наружный контур, проложенный по периметру строения под асфальтовой или бетонной отмосткой в соответствии с указаниями п. 2.26.

К заземлителям защиты от прямых ударов молнии должны быть присоединены находящиеся внутри строения металлические конструкции, оборудование и трубопроводы, а также устройства выравнивания электрических потенциалов.

2.28. Защита от прямых ударов молнии металлических скульптур и обелисков, указанных в п. 17 табл. 1, обеспечивается присоединением их к заземлителю любой конструкции, приведенной в п. 2.26.

При наличии часто посещаемых площадок вблизи таких сооружений большой высоты должно быть выполнено выравнивание потенциала в соответствии с п. 1.10.

2.29. Молниезащита наружных установок, содержащих горючие жидкости с температурой вспышки паров выше 61 °С и соответствующих п. 6 табл. 1, должна быть выполнена следующим образом:

а) корпуса установок из железобетона, а также металлические корпуса установок и резервуаров при толщине крыши менее 4 мм должны быть оборудованы молниеотводами, установленными на защищаемом сооружении или отдельно стоящими;

б) металлические корпуса установок и резервуаров при толщине крыши 4 мм и более следует присоединять к заземлителю. Конструкции заземлителей должны отвечать требованиям п. 2.19.

2.30. Расположенные в сельской местности небольшие строения с неметаллической кровлей, соответствующие указанным в пп. 5 и 9 табл. 1, подлежат защите от прямых ударов молнии одним из упрощенных способов:

а) при наличии на расстоянии 3-10 м от строения деревьев, в 2 раза и более превышающих его высоту с учетом всех выступающих на кровле предметов (дымовые трубы, антенны и т.д.), по стволу ближайшего из деревьев должен быть проложен токоотвод, верхний конец которого выступает над кроной дерева не менее чем на 0,2 м. У основания дерева токоотвод должен быть присоединен к заземлителю;

б) если конек кровли соответствует наибольшей высоте строения, над ним должен быть подвешен тросовый молниеприемник, возвышающийся над коньком не менее чем на 0,25 м. Опорами для молниеприемника могут служить закрепленные на стенах строения деревянные планки. Токоотводы прокладывают с двух сторон по торцевым стенам строения и присоединяют к заземлителям. При длине строения менее 10 м токоотвод и заземлитель могут быть выполнены только с одной стороны;

в) при наличии возвышающейся над всеми элементами кровли дымовой трубы над ней следует установить стержневой молниеприемник высотой не менее 0,2 м, проложить по кровле и стене строения токоотвод и присоединить его к заземлителю;

г) при наличии металлической кровли ее следует хотя бы в одной точке присоединить к заземлителю; при этом токоотводами могут служить наружные металлические лестницы, водостоки и т.д. К кровле должны быть присоединены все выступающие на ней металлические предметы.

Во всех случаях следует применять молниеприемники и токоотводы минимальным диаметром 6 мм, а в качестве заземлителя - один вертикальный или горизонтальный электрод длиной 2-3 м минимальным диаметром 10 мм, уложенный на глубине не менее 0,5 м.

Соединения элементов молниеотводов допускаются сварные и болтовые.

2.31. Защита от прямых ударов молнии неметаллических труб, башен, вышек высотой более 15 м должна быть выполнена путем установки на этих сооружениях при их высоте:

до 5Ом - одного стержневого молниеприемника высотой не менее 1 м;

от 50 до 150 м - двух стержневых молниеприемников высотой не менее 1 м, соединенных на верхнем торце трубы;

более 150 м - не менее трех стержневых молниеприемников высотой 0,2 - 0,5 м или по верхнему торцу трубы должно быть уложено стальное кольцо сечением не менее 160 мм 2 .

В качестве молниеприемника может также использоваться защитный колпак, устанавливаемый на дымовой трубе, или металлические конструкции типа антенн, устанавливаемые на телебашнях.

При высоте сооружения до 50 м от молниеприемников должна быть предусмотрена прокладка одного токоотвода; при высоте сооружения более 50 м токоотводы должны быть проложены не реже чем через 25 м по периметру основания сооружения, их минимальное количество два.

Сечения (диаметры) токоотводов должны удовлетворять требованиям табл. 3, а в зонах с высокой загазованностью или агрессивными выбросами в атмосферу диаметры токоотводов должны быть не менее 12 мм.

В качестве токоотводов могут использоваться ходовые металлические лестницы, в том числе с болтовыми соединениями звеньев, и прочие вертикальные металлические конструкции.

На железобетонных трубах в качестве токоотводов следует использовать арматурные стержни, соединенные по высоте трубы сваркой, скруткой или внахлест; при этом прокладка наружных токоотводов не требуется. Соединение молниеприемника с арматурой должно выполняться минимум в двух точках.

Все соединения молниеприемников с токоотводами должны быть выполнены сваркой.

Для металлических труб, башен, вышек установка молниеприемников и прокладка токоотводов не требуется.

В качестве заземлителей защиты от прямых ударов молнии металлических и неметаллических труб, башен, вышек следует использовать их железобетонные фундаменты согласно п. 1.8. При невозможности использования фундаментов на каждый токоотвод должен быть предусмотрен искусственный заземлитель из двух стержней, соединенных горизонтальным электродом (см. табл. 2); при периметре основания сооружения не более 25 м искусственный заземлитель может быть выполнен в виде горизонтального контура, проложенного на глубине не менее 0,5 м и выполненного из электрода круглого сечения (см. табл. 3). При использовании в качестве токоотводов арматурных стержней сооружения их соединения с искусственными заземлителями должны выполняться не реже чем через 25 м ври минимальном количестве присоединений, равном двум.

При возведении неметаллических труб, башен, вышек металлоконструкции монтажного оборудования (грузопассажирские и шахтные подъемники, кран-укосина и др.) должны быть присоединены к заземлителям. В этом случае временные мероприятия по молниезащите на период строительства могут не выполняться. 22

2.32. Для защиты от заноса высокого потенциала по внешним наземным (надземным) металлическим коммуникациям их необходимо на вводе в здание или сооружение присоединить к заземлителю электроустановок или защиты от прямых ударов молний.

2.33. Защита от заноса высокого потенциала по воздушным линиям электропередачи напряжением до 1 кВ и линиям связи и сигнализации должна выполняться в соответствии с ПУЭ и ведомственными нормативными документами.

СТО 083-004-2010

СТАНДАРТ НП СРО "СОЮЗ СТРОЙИНДУСТРИИ СВЕРДЛОВСКОЙ ОБЛАСТИ"

МОЛНИЕЗАЩИТА ЗДАНИЙ, СООРУЖЕНИЙ, ОТКРЫТЫХ ПЛОЩАДОК И ПРОМЫШЛЕННЫХ КОММУНИКАЦИЙ СИСТЕМАМИ С УПРЕЖДАЮЩЕЙ СТРИМЕРНОЙ ЭМИССИЕЙ. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ, ПРОЕКТИРОВАНИЕ, ТЕХНОЛОГИЯ УСТРОЙСТВА И ТЕХНИЧЕСКАЯ ЭКСПЛУАТАЦИЯ

Дата введения 2011-01-15

Предисловие

Настоящий Стандарт организации (СТО) разработан в соответствии с целями и принципами стандартизации в Российской Федерации, установленными Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании" в редакции Федерального закона от 01 мая 2007 г. N 65-ФЗ "О внесении изменений в Федеральный закон "О техническом регулировании" , а также правилами применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 * "Стандартизация в Российской Федерации. Основные положения" и ГОСТ Р 1.4-2004 "Стандартизация в Российской Федерации. Стандарты организаций. Общие положения", Федеральным законом от 22 июля 2008 г. N 148-ФЗ "О внесении изменений в Градостроительный кодекс Российской Федерации и отдельные законодательные акты Российской Федерации" .
________________
* На территории Российской Федерации документ не действует. Действует ГОСТ Р 1.0-2012 . - Примечание изготовителя базы данных.

В настоящем Стандарте реализованы положения статей - , Федерального закона "О техническом регулировании" , статьи 55 п.2 Федерального закона "О внесении изменений в Градостроительный кодекс Российской Федерации и отдельные законодательные акты Российской Федерации" .

Сведения о Стандарте

1. РАЗРАБОТАН Уральским государственным лесотехническим университетом (г.Екатеринбург), ООО "Компания "КровТрейд" (к.т.н., доцент В.В.Побединский), ООО ТД "Электроизделия" (А.В.Алимов), Управлением Государственного Строительного надзора по Свердловской области (гл.специалист отдела пожарного надзора С.К.Гигин). Под общей редакцией Побединского В.В.

2. ВНЕСЕН НП СРО "Союз стройиндустрии Свердловской области".

3. УТВЕРЖДЕН решением общего собрания НП СРО "Союз стройиндустрии Свердловской области", протокол N 9 от 17 декабря 2010 г.

5. СОГЛАСОВАН "УралНИИпроект РААСН", ОАО "Уралгражданпроект", Уральское управление Федеральной службы по экологическому, технологическому и атомному надзору, Координационный Совет по саморегулированию регионов УРФО.

Введение

Введение

Настоящий Стандарт содержит две части - технические требования и правила по применению и эксплуатации. Таким образом, требования, подлежащие обязательному соблюдению при проектировании и устройстве молниезащиты, а также требования пожарной безопасности изложены в разделе технических требований. В разделе правил приведены методы проектирования и реализации обязательных требований для устройства молниезащиты системами активного типа.

Основным отличием настоящих норм является максимально возможное сокращение описательных требований к средствам и способам молниезащиты зданий, при этом в документе конкретизировано подразделение норм на рекомендуемые и обязательные, определены требования к молниезащите активного типа и основным конструкционным элементам. С учетом европейских стандартов в настоящих нормах повышены требования к коррозионной защите элементов конструкции, а также внутренней молниезащите, что обеспечивает более высокий уровень безопасности объектов и надежности систем.

Оснащение системами молниезащиты различных объектов является обязательной процедурой при строительстве, которая по основным пунктам регламентирована ПУЭ (Правилами устройства электроустановок) и стандартами. В ходе развития систем молниезащиты появляются новые, более эффективные технологии и оборудование. В мировой науке разработаны методы и средства нового поколения защиты от последствий атмосферных разрядов, показавшие на практике высокую эффективность. Одним из таких направлений является использование систем молниезащиты с упреждающей стримерной эмиссией или активной молниезащиты, которые обеспечены соответствующей нормативной базой (стандарты IEC 61024*, IEC 62305*, IEC 61312*) Международной электротехнической комиссии (МЭК) и применяются во всем мире более 30 лет.
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей . - Примечание изготовителя базы данных.

Опыт использования систем активной молниезащиты появился за последние годы в российской строительной отрасли. Преимущества их очевидны, но отсутствие соответствующей нормативной базы долгое время не позволяло реализовать возможности более прогрессивной технологии защиты. Но повышение этажности застройки, ответственности объектов, увеличение оснащенности практически всех зданий компьютерными, информационными системами, микропроцессорными средствами управления, чувствительными к импульсным перенапряжениям и помехам в электрических сетях, сделали задачу совершенствования молниезащиты чрезвычайно актуальной.

В целом применение активной системы не противоречит общепринятой, так как теоретические основы защиты зданий и промышленных коммуникаций остаются неизменными. Различие заключается в конструкции молниеприемника, которая делает систему значительно эффективнее, надежнее, менее трудоемкой при монтаже и эксплуатации.

Надёжная работа системы молниезащиты зависит от правильного проектирования, объективного назначения проектных решений, строгого соблюдения технологии устройства, применения качественных материалов и комплектующих, а также соблюдения режимов ТОиР конструкции. С этой целью в настоящих нормах и разработан раздел правил, в котором изложены методические рекомендации по проектированию, устройству и эксплуатации систем активной молниезащиты.

1 Область применения

1.1 Настоящие нормы разработаны с учётом стандартов, действующих в Российской Федерации, и устанавливают требования к системам молниезащиты с упреждающей стримерной эмиссией (активной молниезащиты), рекомендованные для всех организаций, осуществляющих деятельность на территории Свердловской области, независимо от форм собственности и государственной принадлежности.

1.2 Настоящий Стандарт разработан на основе стандартов Европейского союза, рекомендаций Международной электротехнической комиссии и гармонизированы с ними по основным положениям.

1.3 Нормы действуют в районах строительства Свердловской области для зданий, сооружений различного назначения, открытых площадок и промышленных коммуникаций.

1.4 Разработанные в развитие раздела технических требований правила (разделы 4, 5, 6) распространяются на проектирование и устройство молниезащиты системами с упреждающей стримерной эмиссией для зданий, сооружений, открытых площадок и промышленных коммуникаций.

1.5 В разделе правил изложены рекомендации по проектированию и конструктивным решениям устройств молниезащиты, рассмотрены основные узлы и опробованные на практике средства и способы устройства конструкций молниезащиты системами с упреждающей стримерной эмиссией, а также способы технической эксплуатации, выполнение которых обеспечивает соблюдение обязательных технических требований.

1.6 При проектировании и устройстве молниезащиты, кроме положений настоящих Территориальных градостроительных норм, должны выполняться требования действующих норм проектирования, правил по охране труда и пожарной безопасности.

2 Нормативные ссылки

4.1.5 Все элементы конструкций, находящихся на крыше здания (антенны, мачты и.т.п.) должны быть расположены внутри защищаемого пространства.

4.2 Требования к конструкциям

4.2.1 Молниеприемник с упреждающей стримерной эмиссией должен быть закреплен наверху металлической мачты таким образом, чтобы его верхняя точка была не менее чем на 2 м выше поверхности или наиболее высокой точки объекта, включая антенны, крыши, резервуары и другие выступающие части.

4.2.2 Высота молниеприемника над поверхностью крыши определяется в соответствии с требуемой категорией и радиусом молниезащиты.

4.2.3 Мачты антенн, находящиеся на крыше, должны быть соединены через искровой разрядник с токоотводной проводкой.

4.2.4 При расположении мачты телевизионной или другой антенны на расстоянии менее 10 метров от мачты молниеприемника, обе опоры на высоте крыши должны быть связаны между собой одножильным медным проводом площадью сечения не менее, чем проводников токоотвода. В этом случае также необходима установка молниеприемника на антенной мачте.

4.2.5 Расстояние молниеприемников до линий электропередачи должно быть не менее 3 м.

4.2.6 Каждый молниеприемник должен иметь не менее одного соединения с заземлением.

4.2.7 Токоотводная проводка должна быть соединена с заземляющим контуром здания.

4.2.8 Токоотводы должны быть закреплены к поверхности покрытий и к стенам. В зависимости от места проводки токоотводов расстояние между элементами крепления предусматривается следующим образом:

Для токоотводов на стенах, малоуклонной и скатной кровле:

По DIN V VDE V 0185 через каждые 0,5 м;

По NFC 17-102, NFC 17-100 не менее 3 держателей на каждый метр длины, т.е. с шагом 0,33 м;

По Российским нормам с шагом 1,5-2 м.

4.2.9 Каждый вертикальный токоотвод должен быть соединен с отдельной точкой заземления в соответствии с требованиями NF C 17-102 (таблицы 4-6), .

4.2.10 В соответствии со стандартами DIN V VDE V 0185 (ч.3, п.4.4.1), сопротивление заземления должно быть не более 10 Ом.

4.2.11 При расположении точек заземления молниеотводов рядом с подземными кабелями электроснабжения или металлическими газопроводами должны соблюдаться меры предосторожности согласно требованиям NFC 17-102 (таблицы 4, 5). При этом заземление должно быть расположено на безопасном расстоянии от находящихся в земле инженерных коммуникаций (металлических трубопроводов, силовых кабелей, кабелей связи, газопроводов). Значения безопасных расстояний приведены в таблице 1. Эти расстояния должны соблюдаться и для трубопроводов, не соединенных с заземляющим контуром здания.

4.2.12 Для неметаллических трубопроводов безопасные расстояния не нормируются.

4.2.13 Для всех объектов, оборудованных молниезащитой в соответствии с требованиями международного стандарта CEI 61643-11, французского стандарта NF EN 61643-11 для защиты от перенапряжения обязательна установка разрядников типа 1 (DDS по NF EN 61643-11).

4.3 Требования к материалам

4.3.1 Используемые материалы и изделия должны быть сертифицированы или иметь соответствующие Технические свидетельства.

Таблица 1 - Безопасные расстояния до заземлителя

Подземные коммуникации

Минимальные расстояния до заземлителя, м

Сопротивление грунта

Сопротивление грунта >500 /м

Заземленные предохранительные трубы электрического кабеля

Незаземленные предохранительные трубы электрического кабеля

Система заземления линий электроснабжения

Металлические трубы газопровода

4.3.2 Параметры проводников системы молниезащиты в зависимости от материалов приведены в таблице 2.

Таблица 2 - Параметры проводников системы молниезащиты

Материал

Сечение провода токоотвода, мм

Сечение заземлителя, мм

Алюминий

4.3.3 В местах соединений материалы проводников должны быть электрохимически совместимы или иметь нейтральную токопроводящую прокладку, например, латунь между медью и оцинкованной сталью.

4.3.4 Все элементы конструкции молниезащиты, подверженные воздействиям агрессивных факторов, должны иметь антикоррозионное покрытие. Заземлители должны иметь токопроводящее антикоррозионное покрытие, а места соединений в грунте дополнительно должны иметь гидроизоляцию, например, специальные клеящиеся ленты, мастики и т.п.

4.3.5 Кровельное покрытие в случае использования в качестве естественных проводников должно иметь следующие значения толщины:

Не менее 0,5 мм, если ее необязательно защищать от повреждений (прожога) и нет опасности воспламенения расположенных под кровлей горючих материалов;

Не менее значений указанных в таблице 3 (, польский стандарт PN-IEC-61024), когда необходимо предохранять кровлю (трубы, корпуса резервуаров) от тепловых деформаций или прожога;

4.3.6 Расположенные на кровле технологические трубы и резервуары при использовании их в качестве естественных проводников должны иметь следующую толщину стенок:

Не менее 2,5 мм, если прожог этих стенок не приведет к опасным последствиям;

В случаях, когда тепловые деформации или прожог могут привести к опасным последствиям, не менее значений, указанных в таблице 3.

Таблица 3 - Толщина естественных проводников

Материал

Толщина, мм

Алюминий

5 ПРОЕКТИРОВАНИЕ СИСТЕМ МОЛНИЕЗАЩИТЫ С УПРЕЖДАЮЩЕЙ СТРИМЕРНОЙ ЭМИССИЕЙ

5.1 Общие положения и принципы проектирования

5.1.1 Устройство молниезащиты для зданий и промышленных коммуникаций является обязательным мероприятием для обеспечения условий безопасности, поэтому составляют содержание отдельного раздела проекта и закладываются в график строительства или реконструкции здания или сооружения таким образом, чтобы выполнение молниезащиты происходило одновременно с основными строительно-монтажными работами.

5.1.2 Кроме настоящих Градостроительных норм при проектировании и устройстве молниезащиты используются РД 34.21.122 , СО 153-34.21.122 , ПУЭ -редакция 7, ГОСТ Р 50571.19-000.

5.1.3 Настоящие нормы содержат основные положения по комплексной молниезащите, которая обеспечивает как защиту от прямого удара молнии (внешняя молниезащита), так и защиту от импульсных перенапряжений и помех в электрических сетях с номинальным напряжением до 1000 В, информационных сетях, системах передачи данных, управления, контроля и измерения, сигнализации (т.е. внутренняя молниезащита от вторичных проявлений молнии).

5.1.4 Под молниезащитой понимается комплекс технических решений и специальных приспособлений. Проектирование молниезащиты может выполняться для строящегося объекта и для реконструируемого, который был первоначально оборудован классической системой в соответствии с .

5.1.5 Для вновь возводимого здания процесс проектирования включает следующие этапы:

В зависимости от факторов риска и категории защиты принимается концепция защиты;

Определение метода расчета защиты;

Определение конструктивных особенностей здания, сооружения и системы коммуникаций;

Выполнение общих расчетов конструктивных параметров системы защиты;

Выполнение расчетов и разработка отдельных элементов системы защиты здания;

Выполнение расчетов и разработка отдельных элементов системы защиты коммуникаций;

5.1.6 Для реконструируемого объекта, первоначально оснащенного классической системой защиты, такой процесс включает обследование существующего состояния внешней и внутренней молниезащиты.

5.1.7 В общем виде процесс проектирования представлен на рисунке 1.

Рисунок 1 - Алгоритм процесса проектирования молниезащиты

Рисунок 1 - Алгоритм процесса проектирования молниезащиты

5.1.8 Перед проектированием внешней защиты от молнии необходимо установить категорию защиты, которая необходима для объекта данного типа, место установки молниеприемника, место и тип проводников заземления и устройства заземления. Следует принимать во внимание архитектурные ограничения. Учет ограничений может вносить корректировки в конструкцию системы молниезащиты, снижающие ее эффективность.

5.1.9 В настоящих правилах рассматривается устройство защиты от молнии объектов любой высоты над поверхностью земли, при этом для объектов свыше 60 м учитываются дополнительные требования.

5.1.10 Принцип подбора активного молниеприемника делится на две части:

Возможность попадания молнии и установление категории защиты от молнии;

Подбор места установки системы молниезащиты и ее элементов.

5.1.11 При проектировании учитываются следующие факторы:

Размеры объекта;

Характеристики окружающей среды здания (одинокий объект, на возвышенности, окруженный другими зданиями, деревьями, высота которых может быть больше, равна или меньше высоты здания);

Количество людей в здании, условия эвакуации и др.;

Возможность паники при эвакуации;

Наличие свободных проездов (проходов);

Уровень контроля технологических процессов объекта;

Наличие в здании чувствительной электронной аппаратуры и устройств;

Наличие в здании горючих материалов;

Уклоны и конфигурацию крыши;

Тип кровли, стен и несущих конструкций;

Наличие металлических частей крыши и крупногабаритных конструкций (газовые обогреватели, подъезды, антенны, водные резервуары);

Тип водостока крыши и наличие водосточных труб;

Типы материалов основных конструкций здания (металлические или изолирующие материалы);

Наличие наиболее незащищенных точек объекта (архитектурно-ландшафтные объекты, выступающие части здания, башни, трубы и дымоходы, стоки, подъезды, инженерное оборудование на плоской крыше, элементы вентиляции, системы по чистке стен, перила и др.;

Металлические трубопроводы инженерных коммуникаций объекта (водопроводные, газовые, электрические и проч.);

Наличие дополнительных преград, которые могут преградить путь молнии (наземные электрические линии, металлические заборы, деревья и т.д.);

Состояние окружающей среды, вызывающее повышенную коррозию металлов (наличие промышленных выбросов с содержанием химически агрессивных элементов, цемента, соли, нефтепродуктов).

5.2 Уровни молниезащиты зданий и сооружений

5.2.1 Требуемая степень защиты зданий, сооружений и открытых установок от воздействия атмосферного электричества зависит от взрыво-пожароопасности объектов и обеспечивается правильным выбором категории устройства молниезащиты и типа зоны защиты объекта от прямых ударов молнии. Категория защиты устанавливается на основании подробной информации об объекте и оценке факторов риска.

5.2.2 В соответствии с назначением объектов категория молниезащиты определяется по п.4.1 в зависимости от опасности ударов молнии для самого объекта и его окружения.

5.3 Средства молниезащиты с упреждающей стримерной эмиссией

5.3.1 Средства молниезащиты на сегодняшний день по типу подразделяются на:

Рисунок 2 - Различные системы молниезащиты

А) - классическая система с установкой молниеприемников в центре крыши, зона защиты (слева) неравномерная, внутренний двор не защищен; б) - классическая система с установкой молниеприемников по периметру крыши, зона защиты (слева) равномерная, внутренний двор не защищен; в) - система активной молниезащиты с одним молниеприемником и токоотводом, зона защиты (слева) охватывает все здание и прилегающую территорию; г) - активная молниезащита резервуаров; д) - активная молниезащита ангаров; е) - активная молниезащита открытых площадок; ж) - классическая система натянутых тросов для защиты открытых площадок.

Рисунок 2 - Различные системы молниезащиты

5.3.13 Сравнительные характеристики систем молниезащиты различного типа приведены в таблице 4.

Таблица 4 - Сравнительные характеристики систем молниезащиты

Характеристики

Активная система молниезащиты

Классическая система молниезащиты

Принцип действия

Электронная система создаёт ионизацию (встречный лидер) значительно раньше и большей напряженности поля, чем в случае классической молниеотводной защиты

Физически пассивный молниеприемник действует аналогично активному - создается зона ионизации вокруг острия и молния "притягивается" от защищаемых объектов, но на расстояниях во много раз меньших, чем у активного молниеприемника

Зона защиты

Зона защиты активного молниеприемника многократно превосходит зону защиты обычного штыревого. Охраняются все объекты, охваченные эллипсообразной сферой в виде "капсулы", антенны и архитектурные элементы крыши, а также вся территория (открытые площадки), находящаяся в зоне защиты активного молниеприемника

Пространство в окрестности молниеприемника ограниченной геометрии, в зону защиты которого входит только объект, размещенный в его объеме. Радиус защиты меньше примерно в 10-12 раз, чем у активной системы молниезащиты

Молниеприемники

Достаточно одного молниеприемника активного типа при радиусе защиты около 100 м

Для обеспечения равного уровня защиты требуется выстраивать систему штыревых или горизонтальных молниеприемников, "пространственных клеток" с шагом в зависимости от категории молниезащиты

Токоотводы

Достаточно одного (в некоторых случаях два) токоотвода

Система токоотводов при усложненной архитектуре, "пространственные клетки"

Горизонтальные пояса

Горизонтальные пояса применяются через каждые 30 м только для объектов высотой более 60 м

Искусственные токоотводы соединяются горизонтальными поясами вблизи поверхности земли и через каждые 20 м по высоте объекта

Заземлители

На каждый токоотвод должен быть предусмотрен искусственный заземлитель не менее двух стержней, соединенных горизонтальным электродом

Из-за множества токоотводов предусматривается система заземлителей

Проектирование

Определяется высота мачты, на которую устанавливается головка (по инструкции), исходя из уровня защиты и радиуса защищаемой площади

Выполняется обоснование выбора средств защиты, типов молниеприемников и методов расчетов, выбора материалов молниеприемников, токоотводов, их сечений и общего количества

Наименьшая трудоемкость монтажа

Сложность и трудоемкость монтажа множества молниеприемников, сеток и молниеприемников классической молниезащиты

Эксплуатация

Трудозатраты на ТОиР пропорциональны количеству элементов системы

Необходимо ТОиР (осмотров, проверок, ремонтов) большого количества соединений, крепежных элементов

Эстетика

Не ухудшается эстетический вид объекта. Активная головка занимает минимальное место при установке

При установке молниеотводных сеток или многочисленных стержней портится архитектурный облик объекта

Электромагнитное воздействие

Минимальное негативное воздействие электромагнитного поля из-за ограниченного количества токоотводов

Большое количество токоотводов подвергает почти весь объект воздействию электромагнитного поля

Экономический эффект

Дает завышенный уровень защиты для малоэтажного индивидуального домостроения, что не оправданно экономически. С увеличением габаритов, сложности и требуемого уровня защиты объекта эффект возрастает. Экономия средств достигает 50% от затрат на устройство классической системы за счет снижения стоимости материалов, уменьшения трудозатрат и затрат на эксплуатацию

Экономически более эффективна для малоэтажного индивидуального домостроения с невысокими требованиями к защите (IV категории), без комплексной системы молниезащиты

5.3.1 Назначение и область применения

5.3.1.1 Система активной молниезащиты предназначена для защиты объектов от прямых ударов молнии без применения дополнительной молниезащитной сетки на кровле зданий и сооружений. Одновременно обеспечивается внутренняя молниезащита.

5.3.1.2 Система активной молниезащиты применяется для обеспечения I, II, III категорий молниезащиты промышленных и стратегических объектов, объектов в гражданском строительстве, объектов индивидуального строительства и открытых площадок.

5.3.1.3 Молниеприемник обеспечивает уровень молниезащиты I, II, III категорий в соответствии с СО 153-34.21.122 (п.2.2).

5.3.1.4 Применение системы активной молниезащиты на объектах с требуемым уровнем молниезащиты IV категории рекомендуется после экономического обоснования.

5.3.2 Принцип действия

5.3.2.1 В принципе действия системы активной молниезащиты используется явление образования во время грозы вокруг молниеприёмника области ионизации. Чтобы обеспечить оптимальные условия для восходящего разряда, требуется наличие первичных электронов на верхнем конце стержня. Испускаемые в виде плазмы электроны должны способствовать образованию восходящего разряда, т.е. ионизированная плазма должна совпадать по фазе с восходящим электрическим полем на уровне земли. Такие условия реализуются в молниезащите с упреждающей стримерной эмиссией.

5.3.2.2 При появлении напряженности электромагнитного поля между грозовым облаком и землей ионизатор под действием градиента поля заряжается. С приближением нисходящего лидера напряженность увеличивается. В момент времени, когда напряженность электрического поля между грозовым облаком и поверхностью земли достигнет критического значения (т.е. разряд молнии становится неизбежным или от 50 до 100 кВ/м) индукционным усилителем генерируется старт "восходящего лидера" (импульсов высокого напряжения), направленного навстречу "нисходящему лидеру" (молния от облака). В этом случае образуется канал для прохода грозового заряда к молниеприёмнику и, если молния будет продолжать свой путь в стороны защищаемого объекта, то она будет "притянута" к молниеприемнику (в пределах его расчетной зоны защиты).

5.3.2.3 Молниеприёмник является полностью автономной системой, становится активным только когда возникает реальная угроза удара молнии, не требует внешнего источника электропитания и технического обслуживания.

5.3.2.4 Принципиальная электрическая схема молниезащиты с упреждающей стримерной эмиссией приведена на рисунке 3. Головка молниеприемника состоит из корпуса и стержня, которые являются одновременно электродом, собирающим электрический заряд из электрического поля грозовой тучи (или исходящего лидера) - в приведенной схеме это конденсатор . Внутри корпуса находится специальная катушка с высокой индуктивностью (порядка несколько Генри) - на схеме это узел индуктивно-резисторный . С катушкой последовательно соединен разрядник с емкостью .

Рисунок 3 - Электрическая схема молниезащиты с упреждающей стримерной эмиссией

Рисунок 3 - Электрическая схема молниезащиты с упреждающей стримерной эмиссией

5.3.2.5 Высоковольтные резисторы и конденсаторы соединены по схеме Маркса. Заряд конденсаторов от внешнего поля происходит через резисторы, а разряд через разрядники, настроенные на напряжение порядка 12-14 кВ. При разряде конденсаторов напряжения складываются и формируется импульс амплитудой более 200 кВ.

5.3.2.6 Процесс срабатывания молниезащиты складывается из двух фаз.

Первая фаза - зарождение (появление) нижнего лидера.

При приближении грозового фронта возрастает напряженность поля у поверхности земли, что приводит к наведению на антеннах молниеприемника напряжения, которым заряжается конденсатор до максимального напряжения (порядка 10-30 кВ). Разряд разрядника приводит к переплыву тока через катушку. На стержне головки появляется (индуцируется) напряжение, величина которого почти в два раза может превышать величину, появляющуюся в случае применения классической системы.

Вторая фаза - переплыв тока молнии.

При достижении напряжения на конденсаторах 10-30 кВ происходит пробой разрядников и формирование короткого импульса величиной более 200 кВ. Полярность импульса противоположна полярности грозового фронта. Импульс создает ионизированный канал (обратный разряд) для направления молнии в молниеприемник. Этот ионизированный канал условно увеличивает действующую высоту молниеприемника, не зависящую от полярности грозового разряда и многократно расширяет зону его защиты.

5.3.2.7 Как следует из принципа действия, основной характеристикой молниеприемника с упреждающей стримерной эмиссией является период времени создания обратного разряда. Этот параметр определяется экспериментально для каждого типа молниеприемника. Реальные условия моделируются в лаборатории высокого напряжения по принципу суперпозиции путем складывания напряженности постоянного поля, которое создается во время грозы, и направленного вниз импульсного поля разряда молнии. Результаты испытаний сравниваются со значением времени создания разряда от стержневого молниеприемника классического типа в одинаковых условиях.

5.3.3 Конструкция

5.3.3.1 Конструкция молниезащиты активного типа (рисунок 4) состоит из следующих элементов:

Рисунок 4 - Схема системы внешней молниезащиты

1 - головка молниеприемная; 2 - трубчатая мачта из нержавеющей стали; 3 - держатель мачты; 4 - соединитель мачты и токоотвода; 5 - токоотвод; 6 - счетчик молний; 7 - соединитель контрольный; 8 - заземление.

Рисунок 4 - Схема системы внешней молниезащиты

1. Молниеприемник

1.1. Головка молниеприемная

1.2. Мачта

1.3. Держатели (крепления) мачты

1.4. Опора башенная

2. Токоотводы

2.1. Проводники

2.2. Держатели

2.2.1. Универсальные

2.2.2. Коньковые

2.2.3. Для мягкой кровли

2.2.3. Черепичные

2.2.4. Дистанционные

2.2.5. Кронштейны, анкеры, хомуты

2.3. Соединители

2.3.1. Контрольные

2.3.2. Крестообразные

2.3.3. Т-образные

2.3.4. Универсальные плоские

2.3.5. С заземлителем

3. Счетчик разрядов молний

4. Устройства защиты коммуникаций от импульсов

4.1. Искровые разрядники или варисторы для ограничения импульсов тока

4.2. Варисторные ограничители импульсов напряжений

4.3. Специальные ограничители импульсов для информационных и управляющих систем

5. Заземлители

5.3.3.2 Головка молниеприемная

1) Элементы схемы молниеприемной головки размещены внутри герметичной трубы, изготовленной из нержавеющей стали или меди, на внутренней поверхности которой размещена изолирующая конструкция, предохраняющая от развития поверхностного электрического разряда, и система защитных разрядников, предохраняющая молниеприемник от разрушения в момент разряда молнии.

2) На верхнем фланце головки находится молниеприемный стержень, обеспечивающий работу элементов схемы. Крепление на мачту выполняется, как правило, с помощью винта. Внешний вид головки различных марок приведен на рисунке Б.1, устройство показано на рисунке Б.1, д.

5.3.3.3 Стойки и мачты

1) Изготовленные из специальной высокопрочной стали и оцинкованные внутри и снаружи, стойки обеспечивают возможность установки молниеприемников на высоту до 8 м без использования проволочных оттяжек.

2) Телескопические секции (рисунок Б.2, л) скрепляются между собой двумя зажимными винтами из нержавеющей стали с водонепроницаемыми втулками (рисунок Д.1, в).

3) Молниеприемник ввинчивается в верхнюю часть первой секции. Стойки могут быть в исполнении из нержавеющей стали высотой до 5 м или из меди высотой до 2 м.

5.3.3.4 Легкие башенные опоры

1) Легкие башенные опоры несущей конструкции (рисунок Б.2, ж) изготавливаются из высокопрочной стали и подвергаются горячему цинкованию методом погружения. Они позволяют устанавливать молниеприемники на высоту до 40 м, например, для защиты открытых площадок.

2) Башенные опоры поставляются в виде комплектов секций длиной 3 или 6 м. В комплект могут входить металлические кронштейны крепления, которые заделывается в бетонный фундаментный блок. Стойка для крепления молниеприемника может быть установлена наверху башенной опоры (рисунок А.2, ж).

3) Максимальная занимаемая площадь на поверхности земли не более 1,0 м (рисунок Б.2, ж).

5.3.3.5 Башенные опоры с проволочными оттяжками

1) Башенные опоры из горячеоцинкованной стали и рассчитанные на монтаж с использованием проволочных оттяжек, изготавливаются секциями длиной 3 м и шириной 0,25 м. Секции крепятся друг к другу болтами, а основания могут поставляться либо с шипом, либо в виде плоского основания для крепления на земле.

2) Проволочные оттяжки необходимо крепить через каждые 6 м (через каждые 2 секции) к трем отдельным анкерам, расположенным на уровне земли на расстоянии от основания, равном половине высоты башенной опоры.

3) Стойка для крепления молниеприемника может быть установлена наверху башенной опоры (рисунок Б.2, и).

5.3.3.6 Легкие мачты несущей конструкции

1) Изготовленные из легковесных горячеоцинкованных труб (рисунок Б.2, в, л), секциями по 3 или 6 м, скрепляемых болтами, легкие мачты несущей конструкции устанавливаются либо на земле с помощью кронштейнов, заделываемых в бетон, либо крепятся к торцевой стене здания с помощью консольных монтажных кронштейнов (рисунок Б.1, к).

2) Легкие мачты несущей конструкции позволяют устанавливать молниеприемники на высоту до 15 м. Молниеприемник ввинчивается в верхнюю часть мачты.

3) При наличии надежного фундамента проволочные оттяжки не требуются (рисунок В.1, и).

5.3.3.7 Крепеж одиночных стержней и стоек

1) Кронштейны из оцинкованной стали на болтах для бокового крепления (рисунок Д.1, д). Используются для консольного крепления стойки со смещением до 300 мм на вертикальной поверхности. Кронштейн крепится двумя чугунными шпильками.

2) Для крепления стойки на вертикальной поверхности используются винтовые кронштейны крепления.

3) Для крепления стойки на любом вертикальном трубчатом основании используются монтажные кронштейны для смещенного (на 150-240 мм) крепления из оцинкованной стали или кольцевые хомуты крепления (рисунок Д.1, ч).

4) Для бокового крепления стойки используются стеновые анкеры (держатели) из оцинкованной стали, которые при монтаже заделываются в стену (рисунок Д.1, ш-ю).

5) Хомуты из цинкованной стали для крепления с небольшим смещением до 100 мм.

6) Универсальные кронштейны используются для крепления стойки на вертикальном или горизонтальном трубчатом основании.

5.3.3.2* Проводники
_______________

1) Плоские проводники из металлической полосы, наиболее часто шириной 25, 30, 40 и толщиной до от 3,0 до 3,5 мм. Лента может быть в следующем исполнении:

Лужёная медная;

Алюминиевая;

Из нержавеющей стали;

Из оцинкованной стали.

2) Круглые неизолированные проводники диаметром 8 или 10 мм, в прутках по 3 м или в бухтах могут быть следующие:

Медный без покрытия;

Медный луженый;

Стальной оцинкованный;

Алюминиевый.

5.3.3.2* Соединения
_______________
* Нумерация соответствует оригиналу. - Примечание изготовителя базы данных.

1) Для соединения проводников токоотводов используются плоские зажимы универсальные, крестообразные или Т-образные (рисунок Д.1, ж, м, п, р).

2) Для медных токоотводов рекомендуются зажимы латунные, для стальных токоотводов следует использовать зажимы из оцинкованной стали. Соединение проводников из различных металлов выполняются из биметаллических зажимов (рисунок Д.1, аж).

3) Предусмотрены конструкции зажимов для соединения плоских, круглых и круглых с плоскими полосами (рисунок Д.1, аж, к). 9) Счетчик молний (рисунок Б.2, г), искровые разрядники для соединения с токоотводом поверхностей с большим потенциалом (мачты антенн, металлические конструкции большой массы, возвышающиеся элементы).

5.3.4 Молниеприемники

5.3.4.1 Молниеприемник является составной частью внешней системы молниезащиты, предназначенной для улавливания разряда молний.

5.3.4.2 При реконструкции молниезащиты система с упреждающей стримерной эмиссией может применяться без демонтажа классических молниеприемников.

5.3.4.3 Молниеприемники классической системы конструктивно разделяются на следующие типы:

Стержневые

С вертикальным расположением молниеприемника;

Тросовые (протяженные)

С горизонтальным расположением молниеприемника, закрепленного на двух заземленных опорах;

Параллельные и пересекающиеся под прямым углом проводники на защищаемых объектах.

5.3.4.4 Конструкция и способы монтажа классической системы должны соответствовать требованиям СО 153-34.21.122 (п.3.2.4) или РД 34.21.122 (п.3).

5.3.4.5 Если защита объекта обеспечивается простейшими молниеприемниками (одиночным стержневым, одиночным тросовым, двойным стержневым, двойным тросовым, замкнутым тросовым), размеры молниеприемников можно определять, пользуясь заданными в СО 153-34.21.122 зонами защиты.

5.3.4.6 Для системы с упреждающей стримерной эмиссией при расчетах определяется зона защиты одного молниеприемника (рисунок 5).

Рисунок 5 - Зона молниезащиты активного молниеприемника

Рисунок 5 - Зона молниезащиты активного молниеприемника

5.3.5 Счетчик молний

5.3.5.1 Регистрация количества разрядов молнии в активный молниеприемник выполняется с помощью счетчика молний (счетчика атмосферных разрядов), который закрепляется на одном, как правило, на самом коротком из токоотводных проводов (рисунок 24). Счетчик может устанавливаться над контрольным соединением и на высоте не менее двух метров над поверхностью земли.

5.3.5.2 Принцип действия счетчика основан на том, что импульс протекающего в молниеотводной проволоке тока величиной от 1 до 100 кА, создает вокруг молниеотводной проволоки электромагнитное поле, которое пропорционально напряжению тока в проводнике. Эта зависимость позволяет косвенно, т.е. через измерение напряжения электромагнитного поля измерить ток молнии.

5.3.5.3 Измерительным элементом счетчика является так называемая антенна в виде катушки с ферритовым стержнем. Считающим (регистрирующим) элементом разряда молнии является импульсный электромеханический счетчик, который при регистрации каждого импульса изменяет показание - увеличивает цифровое показание табло на "1". Такой счетчик разрядов имеет микропроцессор, который анализирует индуктивное напряжение в антенне и управляет электромеханическим счетчиком. Микропроцессор питается от батарейки, которая обеспечивает работу счетчика не менее 3 лет. Распространены счетчики двух исполнений (приложение Б) в виде показаний табло от 0 до 9 и от 0 до 99. Тестирование работы, считывание и удаление показаний счетчика реализуется с помощью магнитного ключа.

5.3.6 Токоотводы

5.3.6.1 Токоотводы в любой системе молниезащиты предназначены для передачи тока молнии от молниеприемника к заземлителю. Отличие устройства токоотводов активной молниезащиты от классической только в их количестве. В остальном технические требования, устройство, монтаж аналогичны и выполняются в соответствии с требованиями .

5.3.6.2 Подключаемые к молниеприемнику токоотводы должны соответствовать требованиям СО 153-34.21.122 (п.3.2.2, 3.2.3).

5.3.6.3 Установка токоотводов должна соответствовать требованиям СО 153-34.21.122 (п.3.3).

5.3.6.4 Количество токоотводов определяется в зависимости от габаритов и категории защищаемого объекта.

5.3.6.5 При использовании стальных токоотводов предпочтение должно отдаваться оцинкованной стали, так как обычная сталь, коррозируя на стенах зданий, где они прокладываются, образует несмываемые ржавые пятна.

5.3.6.6 В целях снижения вероятности возникновения опасного искрения токоотводы располагаются таким образом, чтобы между точкой поражения и землей:

Токоотводы прокладывались по кратчайшему пути;

В зависимости от конструкционных особенностей ток проводился по нескольким параллельным проводникам.

5.3.6.7 Для соединения каждого активного молниеприемника с системой заземления должно быть предусмотрено не менее одного проводника. Два и более проводника необходимы в следующих случаях (рисунок 6):

Горизонтальная проекция В проводника больше, чем его вертикальная А проекция;

Активный молниеприемник оборудован на зданиях выше 28 метров.

Рисунок 6 - Расчетная схема для выбора количества токоотводов

Рисунок 6 - Расчетная схема для выбора количества токоотводов

5.3.6.8 При укладке двух проводников они должны быть расположены на двух противоположных стенах здания.

5.3.6.9 При использовании негорючих изоляционных каналов площадь их внутреннего сечения должна быть не менее 2000 мм.

5.3.6.10 При проектировании следует учитывать меньшую эффективность защиты от молнии при внутреннем монтаже токоотводов, трудность осмотра и обслуживания в этом случае, а также риска, появляющегося из-за распространения разряда молнии внутри здания.

5.3.6.11 Если объект имеет негорючее покрытие (металлическое, бетонное, стяжка и др.), токоотвод может быть уложен под покрытием и при необходимости закреплен к несущим конструкциям. Проводящие элементы покрытия и несущих конструкций должны быть соединены с токоотводом сверху (с начала) до низа (до конца). При этом следует учитывать, что укладка токоотводов под конструктивными слоями и заведение разряда молнии под покрытия являются наименее предпочтительными решениями. В этих случаях исключается возможность обслуживания проводников, термические воздействия могут приводить к разрушениям монолитных покрытий, например, стяжек и возможны другие недостатки.

5.3.6.12 Токоотводы изготавливаются из круглых или плоских проводников. Минимальная площадь их поперечного сечения должна быть не менее 50 мм стальных, 25 мм алюминиевых и не менее 16 мм медных проводников. Материалы и размеры типовых токоотводов приведены в таблице 5.

Таблица 5 - Характеристики токоотводов

Материал

Минимальные размеры

Примечания

Электротехническая медь

Лента 30x2 мм; Проволока 8 мм Плетеный проводник 30x3,5 мм

Нержавеющая сталь

Лента 30x2 мм; Проволока 8 мм

Алюминий

Лента 30x3 мм; Проволока 10 мм

Используется на алюминиевых поверхностях

Оцинкованная сталь

Лента 25x4 мм; Проволока 8 мм

5.3.6.13 Использовать коаксиальный кабель для токоотводов не допускается.

5.3.6.14 Рекомендуется использовать медные проводники с антикоррозионным покрытием из-за их физических, механических и электрических свойств (проводимость, технологичность обработки (гибкость), антикоррозийные свойства и др.).

5.3.6.15 Контрольное соединение

Каждый токоотвод подключается к заземлителю контрольным соединением, который должен иметь возможность отключения для замеров сопротивление заземлителя. Как правило, контрольные соединения ставятся на токоотводы на расстоянии не менее двух метров над поверхностью земли. Соединения токоотводов с заземляющим контуром устанавливается в специальных ящиках для контрольных соединений, которые обозначаются символом заземления.

5.3.6.16 Использование элементов зданий в качестве токоотводов

1) Активный молниеприемник должен быть соединен с металлическими конструкциями здания, электрически связанными с системой заземления объекта. Элементы здания могут быть использованы в качестве проводников заземления при соблюдении следующих требований:

Внешние соединительные конструкции должны иметь переходные сопротивления не более 0,03 на каждый контакт;

Внешние металлические конструкции, длина которых не более высоты объекта;

Плотно соединенные внутренние или вмонтированные в стены металлические конструкции, у которых имеются соединения, гарантирующие надежный электрический контакт между разными секциями.

2) Если в качестве токоотводов используется арматура железобетона предварительного натяжения, следует оценивать риск, который вызывает нагревание от тока разряда молнии.

3) Металлические листы, прикрывающие охраняемую зону при условии, что:

Гарантирована электропроводность на длительный период эксплуатации между всеми частями;

Металлические листы не имеют защитного покрытия изолирующим материалом (тонкий слой краски, слой битуминозного покрытия до 1 мм или слой ПВХ до 0,5 мм не считается изоляцией).

4) Следует учитывать возможную замену элементов данного здания в процессе эксплуатации и в случае реконструкции предусматривать другие проводники.

5.3.7 Эквипотенциальные соединения для обеспечения молниезащиты

5.3.7.1 Во время разряда молнии создается разница потенциалов между токоотводными проводниками, заземлением и несоединенными с ними металлическими конструкциями, поэтому в случае пробоя разрядом электричества может появиться искра. Для обеспечения безопасности все металлические конструкции сооружения должны быть соединены электрической связью с системой защиты от молнии или необходимо выдержать соответствующее безопасное расстояние между этими конструкциями и системой молниезащиты. Безопасное расстояние - минимальное расстояние от токоотводов до заземленных металлических конструкций, через которые может появиться искра. Несоблюдение этого расстояния повышает риск образования при ударе молнии опасных искровых разрядов.

5.3.7.2 Определение безопасного расстояния проводников от проводящих масс

1) Безопасное расстояние определяется по формуле :

где - коэффициент величины тока молнии в токоотводах, зависит от количества вертикальных проводников, соединенных с молниеприемником, и может быть определен в соответствии с DIN V VDE V 0185 (ч.3) следующим образом:

при количестве вертикальных проводников,

Коэффициент уровня защиты,

При III, IV

Коэффициент среды между двумя проводниками (для воздуха 1, для твердого материала, бетона, кирпича и др. 0,5);

Величина вертикального расстояния либо между рассматриваемой металлической массой и ее собственным сетевым заземлением, либо между металлической массой и эквипотенциальным соединением с ближайшим вертикальным токоотводом.

2) Таким образом, эквипотенциальные соединения внешних металлических масс предусматриваются в случаях, когда расстояние, отделяющее металлическую массу от вертикального токоотвода, меньше безопасного расстояния , рассчитанного по формуле (1).

Пример

Молниеотвод с упреждающей стримерной эмиссией защищает здание высотой 25 метров, категория защиты II. Определить необходимость соединения вертикального проводника с металлической массой на крыше, подсоединенной к сетевому заземлению и расположенной в 2 метрах от вертикального проводника.

По формуле (1) рассчитывается безопасное расстояние от проводника:

Фактическое расстояние (2 м) больше безопасного расстояния (1,88 м), поэтому соединение вертикального проводника с металлической массой допускается не выполнять.

3) Расстояние молниеприемников до газовых трубопроводов должно быть не менее 3 м.

4) Дополнительно для эквипотенциальных соединений вертикальных токоотводов должны выполняться следующие условия:

Все внешние металлические объекты, находящиеся на расстоянии до 1 м от вертикального проводника должны присоединяться к токоотводу;

Все протяженные по высоте здания металлические объекты должны соединяться в верхней и нижней части с токоотводами.

Если в стене отсутствует токопроводящий элемент (например, арматура), вертикальные проводники должны располагаться на расстоянии не менее 1 м от металлического токопроводящего элемента (например, кабельных магистралей электросети).

5.3.7.3 Для антенн или мачт, поддерживающих электрические кабели, эквипотенциальные соединения должны выполняться через искровой разрядник.

5.3.7.4 Эквипотенциальные соединения внутренних металлических масс предусматриваются с учетом следующих требований:

Внутри защищаемого строения должны быть предусмотрены одна или несколько шин заземления, соединенных с ближайшей цепью заземления;

Все металлические массы в пределах строения должны быть соединены с шиной заземления;

Все стальные конструкции, водопроводы, металлическое экранирование и проводники системы электроснабжения, телефонной сети и т.п. также должны быть соединены с шиной заземления;

Электрические и телефонные кабели без экранирования должны быть соединены с системой молниезащиты через устройство защиты от перенапряжения.

5.3.8 Заземление

5.3.8.1 Заземление является составной частью внешней системы молниезащиты, предназначенное для распределения тока разряда в грунте.

5.3.8.2 Необходимым условием ограничения грозовых перенапряжений в цепи молниеприемника, а также на металлических конструкциях и оборудовании объекта является обеспечение низких сопротивлений заземления. Поэтому в системе молниезащиты нормированию подлежит сопротивление заземлителя и другие, связанные с сопротивлением характеристики.

5.3.8.3 Распределение тока молнии без возникновения перенапряжений может зависеть от формы, габаритов и конструктивного решения заземления. В определенных случаях, при отсутствии рабочего заземления зданий, естественных заземлителей, могут предусматриваться с учетом требований РД 34.21.122 различные конструкции заземления (рисунок 7).

Рисунок 7 - Типичные схемы заземления

А) - два вертикальных заземлителя; б) - три горизонтальных заземлителя ("гусиные лапы"); в) - три вертикальных заземлителей на концах горизонтальных; г) - три горизонтальных с вертикальными; д) - "гусиные лапы" с сетками из заземлителей; е) - комбинация заземлителей; ж) - соединение в равносторонний треугольник; з) - соединение треугольников.

Рисунок 7 - Типичные схемы заземления

5.3.8.4 Заземлители должны быть соединены с устройством уравнивания потенциалов.

5.3.8.5 В соответствии с принятой концепцией молниезащиты российскими нормативными требованиями заземление электрооборудования объекта и молниезащиты должны быть общими. Каждый токоотвод должен быть соединен с заземлителем. Устройства заземления должны соответствовать следующим требованиям:

Сопротивление заземлителя не должно превышать 10 ;

Для надежного отвода тока молнии конструкция заземления должна состоять не менее чем из двух стержней.

5.3.8.6 Заземлитель должен быть оборудован с внешней стороны здания, горизонтальные проводники должны быть уложены на глубине не менее 0,5 м и на расстоянии не ближе 1 м до фундамента.

5.3.8.7 Сопротивление заземления зависит от исходного сопротивления грунта (таблица 6). С учетом этого сопротивления длина горизонтального или вертикального заземлителя рассчитывается по формуле:

Где - исходное сопротивление грунта (·м);

Сопротивление заземлителя (); .

Таблица 6 - Исходное сопротивление грунта

Тип грунта

Исходное сопротивление, ·м

Болотистая территория

Чернозем

Влажный торф

Пластичная глина

Плотная глина

Глинистая почва

Гравий

Мягкий известняк

Плотный известняк

Гранит

5.3.8.8 В месте соединения каждого токоотвода с заземлителем должен быть установлен элемент соединения (контрольный соединитель), таким образом, чтобы, разъединив его, можно было измерить сопротивление заземлителя.

5.3.8.9 Параметры проводников для заземлителей приведены в таблице 7.

Таблица 7 - Параметры проводников для заземлителей

Заземлители

Материалы

Минимальные размеры

Неизолированная или покрытая оловом электротехническая медь

Произошла ошибка

Платеж не был завершен из-за технической ошибки, денежные средства с вашего счета
списаны не были. Попробуйте подождать несколько минут и повторить платеж еще раз.

Необходимость обустройства качественных систем молниезащиты жилых и промышленных зданий особенно остро возникла в начале прошлого столетия во времена всеобщей индустриализации и электрификации, актуальна она и в настоящее время. Сегодня ежедневно на планете Земля наблюдается около 44-45 тысяч гроз, которые могут привести к выходу электроприборов из строя, повреждению целостности зданий и построек, пожарам и гибели людей.

Для создания работоспособных, эффективных и оптимальных для каждого объекта систем разработаны общепризнанные нормативы проектирования и организации молниезащиты. Существуют международные и отечественные стандарты и правила. Кроме того, в России различают отраслевые и корпоративные стандарты (например, Газпрома, МОЭК и т.п.). В основу всех норм, регламентирующих проектирование молниезащиты, положен многолетний опыт человечества по организации электробезопасности жилых домов и промышленных предприятий, а также особенности современных построек

Российские нормативы в области молниезащиты

Создание отечественной нормативной базы по проектированию комплекса мер для обеспечения молниезащиты берет начало в 30-х годах минувшего века. Первоначально были разработаны требования и правила для производственных зданий и сооружений, а также линий электропередач. В 50-х годах прошлого столетия эти требования начали использоваться для частных домов. Позже с учетом многолетних наблюдений и исследований электромагнитной обстановки во время удара молнии на территории бывших союзных республик Министерство энергетики СССР ввело Инструкцию по обустройству молниезащиты зданий и сооружений РД 34.21.122-87. Эта инструкция, как наследие, действует до сих пор. Однако она давно устарела, поэтому для создания современных систем громоотводов пользуются международными стандартами, установленными Международной электротехнической комиссией (МЭК) и российскими инструкциями более поздних редакций.

В России специалисты и сейчас для создания ряда мер молниезащиты ориентируются на требования и нормы, изложенные в советской инструкции РД 34.21.122-87 (скачать в pdf>> ). Данный норматив является первичным документом, на который опираются профессионалы при выборе схемы конструкции громоотводов на этапе проектирования зданий и сооружений. Она дает толкование всех важных терминов и понятий, описывает требования к органзации защиты от молний и к конструкциям громоотводов, а также расчет молниеотводов. Именно она классифицирует здания и позволяет определить необходимый уровень защиты. К недостатком РД 34.21.122-87относят отсутствие описаний нормативов по организации молниезащиты для склада взрывчатых веществ и пороха, а также в ней нет рекомендаций по выбору материалов для заземлений и т.д. Дополнить и обновить положения советского документа попытались в «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» СО-153-34.21.122-2003 (скачать в pdf>> ). Она включает нормы грозозащиты в коммуникациях.

Седьмая редакция ПУЭ (Правила устройства электроустановок 7-е издание, Главы 2.4, 2.5, 4.2) разработана с учетом всех видов и типов электрического оснащения и агрегатов. В этом издании собраны все базовые требования электробезопасности и заземления, используемые при обустройстве защиты от удара молнией промышленных и бытовых объектов. Подвести российские стандарты к мировым требованиям IEC в декабре 2011 года позволили первая и вторая часть ГОСТа Р МЭК 62305-1-2010 «Защита от молнии» , а также ГОСТ Р 50571-4-44-2011 «2011 Электроустановки низковольтные. Требования по обеспечению безопасности. Защита от скачков напряжения и электромагнитных помех» (действует с 01.07.2012). Этот документ регламентирует основные нормы по организации безопасности низковольтных установок при появлении отклонений напряжения и электромагнитных помех. Этот стандарт не действует на системы распределения электричества населению, на промышленные объекты и на системы для генерирования и выдачи электроэнергии для них.

Требования к механизмам защиты электрических сетей и электрооборудования при прямом или косвенном влиянии грозовых или иных переходных перегрузок для коммутации к силовым цепям переменного тока (частотой 50 - 60 Гц), постоянного тока и к оснащению с номинальным напряжением до 1000 В (действующее значение) или 1500 В постоянного тока подробно изложены в ГОСТе Р 51992-2011 (МЭК 61643-1-2005) «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Технические требования и методы испытаний» (с 01.07.2012).

Принципы подбора, монтирования и координации устройств грозозащиты от импульсных перенапряжений, предназначенных для подсоединения к силовым цепям переменного тока (частотой 50-60 Гц) или постоянного тока и к оборудованию на номинальное напряжение до 1000 В (действующее значение) переменного тока или 1500 В постоянного тока описаны в ГОСТ Р МЭК 61643-12-2011 «Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Принципы выбора и использования» (с 01.01.2013).

Все основные требования при прямом или косвенном воздействии грозовых или прочих переходных перенапряжений к устройствам для защиты телекоммуникационных и сигнализационных сетей с обозначенными напряжениями системы до 1000 В переменного тока и 1500 В постоянного тока регламентируются ГОСТом Р 54986-2012 (МЭК 61643-21: 2009) «Устройства защиты от импульсных перенапряжений низковольтные. Часть 21. УЗИП для систем телекоммуникации и сигнализации (информационных систем). Требования к работоспособности и методы испытаний» (с 01.07.2013).

Группа стандартов МЭК (IEC) и их связь

Развитие науки и электротехники не стоит на месте. Наиболее полно, детально и качественно современные мероприятия по грозозащите отображены во всемирных нормативах МЭК «Защита от воздействия молнии МЭК 62305:2010».

Стандарт «Защита от воздействия молнии МЭК 62305:2010» определяет базовые правила защиты от порчи молнией любых построек, живущих в них животных и людей, разных инженерных коммуникаций и систем и иных конструкций относящихся к ним, кроме железнодорожной системы, автотранспорта, воздушных и водных транспортных средств, подземных трубопроводов повышенного давления и т.п.

Нормативы МЭК включают стандарт, определяющий общие положения и описывающий потенциально возможные последствия и опасность молний 62305-1. Потребность организации защиты определяется в соответствии с системой расчета риска и с учетом материального эффекта от установки мер защиты от ударов молнии описывает стандарт 62305-2. Третья часть МЭК 62305:2010 посвящена описанию мер безопасности, требуемых для снижения показателей аварий в постройках и сведения к минимуму уровня опасности для жизни и здоровья людей, находящихся внутри. В четвертой части данного стандарта описан комплекс мер для понижения числа отказов электросистем, приборов и устройств внутри зданий.

Взаимосвязь группы правил МЭК 62305:2010 определяется уровнем опасности поражения молнией объекта и риском возникновения возможных повреждений. При повышенном риске прямого попадания молнии и необходимости обустройства внешней защиты от прямых ее ударов в строения пользуются требованиями стандарта 62305-3:2010. При повышенной опасности поражения электрооборудования и порчи электросетей от вторичного воздействия молнии актуален стандарт 62305-4:2010.

Сравнение отечественных стандартов и МЭК

Современные специалисты, занимающиеся вопросами проектировки и создания молниезащиты современных построек любого назначения, отмечают, что требования МЭК гораздо строже в сравнении с инструкцией советских времен и даже более поздними российскими изданиями ГОСТов. Как правило, если российские Инструкции не дают полный объем необходимой информации для правильного и эффективного создания защиты от молний, профессионалы используют признанные в мире стандарты МЭК.

Наиболее ярким отличием, например инструкции РД 34.21.122-87 от норм IEC при создании внешней защиты является, отсутствие подробного описания организации молниеприемной сети для сложных рельефных крыш, а также отсутствие рекомендаций по рекомендуемым к использованию материалов для заземлений и т.д. При обустройстве внутренней системы защиты стандарты МЭК детально описывают применение разрядников без искровых промежутков для предотвращения пожаров, выхода из строя бытовой техники, промышленного оборудования и внутренних сетей.

Нормативные требования к молниезащите

Еще раз коротко самое главное о стандартизации.

Состав системы молниезащиты по стандартам IEC (МЭК)

Кратко о том, что входит в состав комплекса мероприятий по защите от молний и гроз по мнению Международной электротехнической комиссии, а также взаимосвязанные решения в области внешней и внутренней молниезащиты.

Требования к элементам внешней молниезащиты

Какие испытания проходят элементы молниеприемные системы, соединительные компоненты, проводники, заземляющие электроды? Описание методик проверки, имитирующих воздействие естественных атмосферных условий и воздействие коррозии на компоненты.

Расчет стоимости

Выберете размер... 10х15 15х15 20х15 20х20 20х30 30х30 30х40

Выберете размер... 10 12 14 16 18 20 22

Наши объекты

    Здание Военторга на Воздвиженке, г. Москва

    Адрес объекта: г. Москва, ул. Воздвиженка, 10.

    Вид работ: Монтаж системы внешней молниезащиты здания.

    Комплектующие: производства компании Dehn+Sohne Gmbh.

    Элементы комплекта: стальной оцинкованный проводник Rd8; хомут-держатель Rd8-10 трубный 17.2 мм с клеммой, СГЦ/V2A; соединитель клеммный Rd8-10, СГЦ; соединитель универсальный Rd8-10 / Rd8-10, СГЦ; молниеприемный стержень Rd16 L=2.000 мм, алюминий; клемма-держатель фальцевая вертикальная, СГЦ; фальцевая клемма Rd8-10, СГЦ; соединитель промежуточный Rd8-10 / Fl30-Rd16, СГЦ; стальной хомут крепления ленты; лента из нержавеющей стали V2A; держатель Rd16 c М8.

    ГТЭС Терешково

    Адрес объекта: г. Москва. Боровское ш., коммунальная зона «Терешково».

    Вид работ: монтаж системы внешней молниезащиты (молниеприемная часть и токоотводы).

    Комплектующие:

    Исполнение: Общее количество проводника из стали горячего цинкования для 13 сооружений в составе объекта составило 21.5000 метров. По кровлям прокладывается молниеприемная сетка с шагом ячейки 5х5 м, по углам зданий монтируются по 2 токоотвода. В качестве элементов крепления использованы стеновые держатели, промежуточные соединители, держатели для плоской кровли с бетоном, скоростные соединительные клеммы.


    Солнечногорский завод "ЕВРОПЛАСТ"

    Адрес объекта: Московская обл., Солнечногорский район, дер. Радумля.

    Вид работ: Проектирование системы молниезащиты промышленного здания.

    Комплектующие: производства фирмы OBO Bettermann.

    Выбор системы молниезащиты: Молниезащиту всего здания выполнить по III категории в виде молниеприемной сетки из горячеоцинкованного проводника Rd8 с шагом ячейки 12х12 м. Молниеприемный проводник уложить поверх кровельного покрытия на держатели для мягкой кровли из пластика с бетонным утяжелением. Обеспечить дополнительную защиту оборудования на нижнем уровне кровли установкой многократного стержневого молниеотвода, состоящего из стержневых молниеприемников. В качестве молниеприемника использовать стальной горячеоцинкованный прут Rd16 длиной 2000 мм.

    Московский международный Дом Музыки

    Адрес объекта: г. Москва, Космодамианская наб., д. 52, стр. 8

    Вид работ: монтаж системы обогрева лотка поверхностного водосбора и участков сливов на балконах 2-го и 3-го этажей

    Нагревательный элемент: саморегулирующийся нагревательный кабель Thermon RGS-2-60-PU.

    Производимые работы: Ревизия электрической системы водостоков: замер сопротивления изоляции силовых и нагревательных кабелей; проверка состояния распределительных коробок; проверка работоспособности шкафов управления. Изготовление и монтаж электрической системы обогрева: применялись регуляторы ETR и ETV фирмы OJ, автоматические выключатели и контакторы ABB, кабель нагревательный саморегулирующийся Thermon.

    Адрес объекта: Московская обл., поселок Икша

    Вид работ: Проектирование и монтаж систем внешней молниезащиты, заземления и уравнивания потенциалов.

    Комплектующие: B-S-Technic, Citel.

    Внешняя молниезащита: молниеприемные стержни из меди, медный проводник общей длиной 250 м, кровельные и фасадные держатели, соединительные элементы.

    Внутренняя молниезащита: Разрядник DUT250VG-300/G TNC, производство CITEL GmbH.

    Заземление: стержни заземления из оцинкованной стали Rd20 12 шт. с наконечниками, стальная полоса Fl30 общей длиной 65 м, крестовые соединители.


    Административно-офисное здание, г. Москва.

    Адрес объекта: г. Москва, Борисоглебский переулок.

    Вид работ: изготовление и монтаж системы внешней, внутренней молниезащиты и заземления.

    Комплектующие: DEHN+SOHNE Gmbh, J. Propster.

    Система внешней молниезащиты: комбинированная в виде молниеприемной сетки из медного проводника Rd8 с шагом ячейки 10х10 м и двух стержневых алюминиевых молниеприемников Rd16 длиной 2,5 м; молниеприемный проводник уложен на держатели для мягкой кровли из пластика с бетонным утяжелением. В качестве элементов крепления и соединения использованы биметаллические универсальные соединители Cu/Al Rd8-10/Rd8-10 и стеновые держатели из меди Rd8-10.

    Внутренняя молниезащита: 4-х полюсный разрядник перенапряжения компании J. Propster, тип сети TNS, 12.5 кА.

    Заземление: выполнено в виде отдельных очагов с применением глубинных заземлителей из оцинкованной стали Rd20, полосы заземления сечением 40х4 мм, соединителей Rd20хFl40/Rd8-10 и изолированного проводника Rd10/13.


    Территория "Ногинск-Технопарк", производственно-складской корпус с офисно-бытовым блоком

    Адрес объекта: Московская обл., Ногинский район.

    Вид работ: производство и монтаж системы внешней молниезащиты и заземления.

    Комплектующие: J. Propster.

    Внешняя молниезащита: На плоской кровле защищаемого здания уложена молниеприемная сетка с шагом ячейки 10 х10 м. Зенитные фонари защищены посредством установки на них молниеприемных стержней длиной 2000 мм и диаметром 16 мм в количестве девяти штук.

    Токоотводы: Проложены в «пироге» фасадов здания в количестве 16 штук. Для токоотводов использован проводник из оцинкованной стали в ПВХ-оболочке диаметром 10 мм.

    Заземление: Выполнено в виде кольцевого контура c горизонтальным заземлителем в виде оцинкованной полосы 40х4 мм и глубинными стерженями заземления Rd20 длиной L 2х1500 мм.