Доклад: Ионизирующее излучение и защита от них. Понятие о радиации

Ионизирующее излучение вызывает в организме цепочку обратимых и необратимых изменений. Пусковым механизмом воздействия являются процессы ионизации и возбуждения атомов и молекул в тканях. Диссоциация сложных молекул в результате разрыва химических связей - прямое действие радиации. Существенную роль в формировании биологических эффектов играют радиационно-химические изменения, обусловленные продуктами радиолиза воды. Свободные радикалы водорода и гидроксильной группы, обладая высокой активностью, вступают в химические реакции с молекулами белка, ферментов и других элементов биоткани, что приводит к нарушению биохимических процессов в организме. В результате нарушаются обменные процессы, замедляется и прекращается рост тканей, возникают новые химические соединения, не свойственные организму. Это приводит к нарушению деятельности отдельных функций и систем организма.

Индуцированные свободными радикалами химические реакции развиваются с большим выходом, вовлекая в процесс сотни и тысячи молекул, не задействованных излучением. В этом состоит специфика действия ионизирующего излучения на биологические объекты. Эффекты развиваются в течение разных промежутков времени: от нескольких секунд до многих часов, дней, лет.

Ионизирующая радиация при воздействии на организм человека может вызвать два вида эффектов, которые клинической медициной относятся к болезням: детерминированные пороговые эффекты (лучевая болезнь, лучевой ожог, лучевая катаракта, лучевое бесплодие, аномалии в развитии плода и др.) и стохастические (вероятностные) беспороговые эффекты (злокачественные опухоли, лейкозы, наследственные болезни).

Острые поражения развиваются при однократном равномерном гамма-облучении всего тела и поглощенной дозе выше 0,5 Гр. При дозе 0,25-0,5 Гр могут наблюдаться временные изменения в крови, которые быстро нормализуются. В интервале дозы 0,5-1,5 Гр возникает чувство усталости, менее чем у 10% облученных могут наблюдаться рвота, умеренные изменения в крови. При дозе 1,5- 2,0 Гр наблюдается легкая форма острой лучевой болезни, которая проявляется продолжительной лимфопенией, в 30-50% случаев - рвота в первые сутки после облучения. Смертельные исходы не регистрируются.

Лучевая болезнь средней тяжести возникает при дозе 2,5- 4,0 Гр. Почти у всех облученных в первые сутки наблюдаются тошнота, рвота, резко снижается содержание лейкоцитов в крови, появляются подкожные кровоизлияния, в 20% случаев возможен смертельный исход, смерть наступает через 2-6 недель после облучения. При дозе 4,0-6,0 Гр развивается тяжелая форма лучевой болезни, приводящая в 50% случаев к смерти в течение первого месяца. При дозах, превышающих 6,0 Гр, развивается крайне тяжелая форма лучевой болезни, которая почти в 100% случаев заканчивается смертью вследствие кровоизлияния или инфекционных заболеваний. Приведенные данные относятся к случаям, когда отсутствует лечение. В настоящее время имеется ряд противолучевых средств, которые при комплексном лечении позволяют исключить летальный исход при дозах около 10 Гр.

Хроническая лучевая болезнь может развиться при непрерывном или повторяющемся облучении в дозах, существенно ниже тех, которые вызывают острую форму. Наиболее характерными признаками хронической лучевой болезни являются изменения в крови, ряд симптомов со стороны нервной системы, локальные поражения кожи, поражения хрусталика, пневмосклероз (при ингаляции плутония-239), снижение иммунореактивности организма.

Степень воздействия радиации зависит от того, является облучение внешним (при попадании радиоактивного изотопа внутрь организма) или внутренним. Внутреннее облучение возможно при вдыхании, заглатывании радиоизотопов и проникновении их в организм через кожу.

Некоторые радиоактивные вещества поглощаются и накапливаются в конкретных органах, что приводит к высоким локальным дозам радиации. Кальций, радий, стронций и др. накапливаются в костях, изотопы йода вызывают повреждение щитовидной железы, редкоземельные элементы вызывают преимущественно опухоли печени. Равномерно распределяются изотопы цезия, рубидия, вызывая угнетение кроветворения, атрофию семенников, опухоли мягких тканей. При внутреннем облучении наиболее опасны альфа-излучающие изотопы полония и плутония.

Способность вызывать отдаленные последствия: лейкозы, злокачественные новообразования, раннее старение - одно из коварных свойств ионизирующего излучения.

Гигиеническая регламентация ионизирующего излучения осуществляется Нормами радиационной безопасности НРБ-99 (Санитарными правилами СП 2.6.1.758-99). Основные дозовые пределы облучения и допустимые уровни устанавливаются для следующих категорий облучаемых лиц:

  • - персонал - лица, работающие с техногенными источниками (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);
  • - все население, включая лиц из персонала, вне сферы и условий их производственной деятельности.

Для категорий облучаемых лиц устанавливают три класса нормативов: основные пределы доз - ПД (табл. 3.13), допустимые уровни, соответствующие основным пределам доз, и контрольные уровни.

Таблица 3.13. Основные пределы доз (извлечение из НРБ-99)

* Для лиц группы Б все дозовые пределы не должны превышать 0,25 дозовых пределов группы А.

Доза эквивалентная НТ н - поглощенная доза в органе или ткани От н, умноженная на соответствующий взвешивающий коэффициент для данного излучения УЯ:

Единицей измерения эквивалентной дозы является Дж o кг-1, имеющий специальное наименование - зиверт (Зв).

Значения №д для фотонов, электронов и мюонов любых энергий составляет 1, для а- частиц, осколков деления, тяжелых ядер - 20.

Доза эффективная - величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности. Она представляет собой сумму произведений эквивалентной дозы в органе НхТ на соответствующий взвешивающий коэффициент для данного органа или ткани ]¥т:

где НхТ- эквивалентная доза в ткани Г за время т.

Единица измерения эффективной дозы так же, как эквивалентной дозы, - Дж o кг" (зиверт).

Значения У/у для отдельных видов ткани и органов приведены ниже.

Вид ткани, орган: ¥т

гонады..............................................................................................0,2

костный мозг...............................................................................0,12

печень, грудная железа, щитовидная железа...................0,05

кожа................................................................................................0,01

Основные пределы доз облучения не включают в себя дозы от природного и медицинского облучения, а также дозы, полученные вследствие радиационных аварий. На эти виды облучения устанавливаются специальные ограничения.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) 1000 мЗв, а для населения за период жизни (70 лет) - 7 мЗв.

В табл. 3.14 приведены значения допустимого радиоактивного загрязнения рабочих поверхностей, кожи, спецодежды, спецобуви, средств индивидуальной защиты персонала.

Таблица 3.14. Допустимые уровни радиоактивного загрязнения рабочих поверхностей, кожи, спецодежды, спецобуви и средств индивидуальной защиты, част/(см-1 - мин) (извлечение из НРБ-99)

Объект загрязнения

а-активные нуклиды

(і-активные

нуклиды

отдельные

прочие

Неповрежденная кожа, полотенца, спецбелье, внутренняя поверхность лицевых частей средств индивидуальной защиты

Основная спецодежда, внутренняя поверхность дополнительных средств индивидуальной защиты, наружная поверхность спецобуви

Наружная поверхность дополнительных средств индивидуальной защиты, снимаемой в сан шлюзах

Поверхности помещений периодического пребывания персонала и находящегося в них оборудования

Тема 5. Защита от ионизирующих излучений.

Воздействие ионизирующих излучений на человека.
Ионизирующее излучение

Ионные пары

Разрыв молекулярных соединений

(свободные радикалы).

Биологический эффект

Радиоактивность - самораспад атомных ядер, сопровождающийся излучением гамма-квантов, выбрасыванием - и -частиц. При ежедневной длительности (несколько месяцев или лет) облучения в дозах превышающих ПДД, у человека развивается хроническая лучевая болезнь (1 стадия - функциональное нарушение центральной нервной системы, повышенная утомляемость, головные боли, снижение аппетита). При однократном облучении всего тела высокими дозами (>100 бэр) развивается острая лучевая болезнь. Доза 400-600 бэр - возникает смерть у 50% облученных. Первичный этап воздействия на человека - ионизация живой ткани, молекул йода. Ионизация приводит к разрыву молекулярных соединений. Образуются свободные радикалы (H, OH), которые вступают в реакции с другими молекулами, что разрушает тело, нарушает работу нервной системы. Радиоактивные вещества накапливаются в организме. Выводятся они крайне медленно. В дальнейшем возникает острая или хроническая лучевая болезнь, лучевой ожог. Отдаленные последствия - лучевая катаракта глаз, злокачественная опухоль, генетические последствия. Естественный фон (космическое излучение и излучение радиоактивных веществ в атмосфере , на земле, в воде). Мощность эквивалентной дозы 0,36 - 1,8 мЗв/год, что соответствует мощности экспозиционной дозы 40-200 мР/год. Рентгеновские снимки: черепа - 0,8 - 6 Р; позвоночника - 1,6 - 14,7 Р; легких (флюорография) - 0,2 - 0,5 Р; рентгеноскопия - 4,7 - 19,5 Р; желудочно-кишечного тракта - 12,82 Р; зубов -3-5 Р.

Различные виды облучения не одинаково воздействуют на живую ткань. Воздействие оценивают по глубине проникновения и количеству пар ионов, образующихся на одном см пути частицы или луча. - и -частицы проникают лишь в поверхностный слой тела, - на несколько десятков мкм и образует несколько десятков тысяч пар ионов на пути одного см. - на 2,5 см и образуют несколько десятков пар ионов на пути 1 см. Рентгеновское и  - излучение обладает большой проникающей способностью и малым ионизирующим действием.  - кванты, рентгеновское, нейтронное излучение с образованием ядер отдачи и вторичным излучением. При равных поглощенных дозах Д погл разные виды излучения вызывают не одинаковый биологический эффект. Это учитывается эквивалентной дозой

Д экв = Д погл * К i , 1 Кл/кг =3,876 * 10 3 Р

i =1

где Д погл - поглощенная доза разных излучений, рад;

К i - коэф качества излучения.

Экспозиционная доза Х - применяется для характеристики источника излучения по ионизирующей способности ед измерения кулон на кг (Кл/кг). Дозе 1 Р соответствует образование 2,083 * 10 9 пар ионов на 1 см 3 воздуха 1 Р = 2,58 * 10 -4 Кл/кг.

Единицей измерения эквивалентной дозы излучения является зиверт (ЗВ ), спец. единица этой дозы - биологический эквивалент рентгена (БЭР) 1 ЗВ = 100 бэр. 1 бэр - доза эквивалентного излучения, которое создает такое же биологическое поражение, как и 1 рад рентгеновского или  - излучения (1 бэр = 0,01Дж/кг). Рад - внесистемная единица поглощенной дозы соответствует энергии 100 эрг поглощенной веществом массой 1г (1 рад = 0,01Дж/кг =2,388 * 10 -6 кал/г). Единица поглощенной дозы (СИ) - Грей - характеризует поглощенную энергию в 1 Дж на массу в 1кг облученного вещества (1 Грей = 100 рад).
Нормирование ионизирующих облучений

Согласно нормам радиационной безопасности (НРБ- 76) для человека установлены предельно допустимые дозы облучения (ПДД). ПДД - это годовая доза облучения, которая при равномерном накоплении в течение 50 лет не вызовет неблагоприятных изменений здоровья облучаемого и его потомства.

Нормами установлены 3 категории облучения:

А - облучение лиц работающих с источниками радиоактивных излучений (персонал АЭС);

Б - облучение лиц работающих в соседних помещениях (ограниченная часть населения);

В - облучение населения всех возрастов.

Значения ПДД облучения (сверх естественного фона)

Однократная доза внешнего облучения допускается равной 3 бэр в квартал при условии, что годовая доза не привысит 5 бэр. В любом случае доза накопленная к 30 годам не должна превышать 12 ПДД т.е. 60 бэр.

Естественный фон на земле - 0,1 бэр/год (от 00,36 до 0,18 бэр/год).

Контроль облучения (службой радиационной безопасности или специальным работником).

Осуществляют систематическим измерением доз ионизирующих излучений источников на рабочих местах.

Приборы дозиметрического контроля основаны на ионизационном сцинтилляционном и фотографическом методах регистрации.

Ионизационный метод - основан на способности газов под действием радиоактивных излучений становится электропроводными (за счет образования ионов).

Сцинтилляционный метод - основан на способности некоторых люминесцирующих веществ, кристаллов, газов испускать вспышки видимого света при поглощении радиоактивного излучения (фосфор, флуор, люминофор).

Фотографический метод - основан на воздействии радиоактивного излучения на фотоэмульсию (почернение фотопленки).

Приборы: КПД - 6 (карманный индивидуальный дозиметр 0,02-0,2Р); счетчики Гейгера(0,2-2Р).

Радиоактивность - самопроизвольное превращение неустойчивых атомных ядер в ядра элементов, сопровождающиеся испусканием ядерных излучений.

Известны 4 типа радиоактивности: альфа - распад, бета - распад, спонтанное деление атомных ядер, протонная радиоактивность.

Для измерения мощности экспозиционной дозы: ДРГ-0,1; ДРГ3-0,2;СГД-1

Дозиметры экспозиционной дозы накопительного типа: ИФК-2,3; ИФК-2,3М; КИД -2; ТДП - 2.
Защита от ионизирующих излучений

Ионизирующие излучения поглощает любой материал, но в различной степени. Используют следующие материалы:

к - коэфф. пропорциональности, к  0,44 * 10 -6

Источник - электровакуумный аппарат. Напряжение U = 30-800 кВ, ток анода I= десятки мА.

Отсюда толшина экрана:

d = 1/ * ln ((P 0 /P доп)*B)

На основании выражения построены номонограммы которые позволяют для необходимой кратности ослабления и заданного напряжения определять толщину экрана из свинца.

К осл = P 0 /P доп по К осл и U -> d

к = I*t*100/36*x 2 P доп

I - (мА)- ток в рентгеновской трубке

t (ч) в нед.

P доп - (мР/нед).

Для быстрых нейтронов с энерг.
J x =J 0 /4x 2 где J 0 - абсолютный выход неитронов в 1 сек.

Защита водой или парафином (из-за больш. колич. водорода)

Контейнеры для хранения и транспортировки - из смеси парафина с каким - либо веществом, сильно поглощающим медленные нейтроны (напр различные соединения бора).

Способы и средства защиты от радиоактивных излучений.

Радиоактивные вещества как потенциальные источники внутреннего облучения по степени опасности разделяют на 4 группы - А,Б,В,Г (в убывающем порядке по степени опасности).

Установлены “ Основными санитарными правилами работы с радиоактивными веществами и источниками ионизирующих излучений” - ОСП -72. Все работы с открытыми радиоактивными веществами разделяются на 3 класса (см табл). Сп и ср-ва защиты для работ с открытыми радиоактивными в-ми установлены в зависимости от класса (I,II,III) радиационной опасности работ с изотопами.
Активность препарата на рабочем месте мкКи


Класс опасности работ

А

Б

В

Г

I

> 10 4

>10 5

>10 6

>10 7

II

10 -10 4

100-10 5

10 3 - 10 6

10 4 - 10 7

III

0.1-1

1-100

10-10 3

10 2 -10 4

Работы с открытыми источниками класса I, II требуют специальных мер защиты и проводятся в отдельных изолированных помещениях. Не рассматриваются. Работы с источниками III класса проводятся в общих помещениях специально оборудованных местах. Для этих работ установлены следующие меры защиты:

1) На оболочке прибора мощность экспозиционной дозы должна быть 10 мр/ч;


    На расстоянии 1 м от прибора мощность экспозиционной дозы  0,3 мр/ч;

    Приборы помещаются в специальном защитном контейнере, в защитном кожухе;

    Сокращают продолжительность работ;

    Вывешивают знак радиационной опасности

    Производство работ осуществляется по наряду, бригадой в составе 2 человек, с квалификационной группой - 4.

    До работ допускаются лица старше 18 лет, специально обученные, медосмотры не реже 1 раза в 12 мес.

    Применяются СИЗ: халаты, шапочки, из х.б. ткани, очки из стекла со свинцом, манипуляторы, инструмент.

    Стены помещения окрашены масляной краской на высоту больше 2 метров, полы стойкие к моющим средствам.

ТЕМА 6.

Эргономические основы охраны труда.
В процессе труда на человека воздействуют психофизические факторы, физические нагрузки, среда обитания и др.

Изучением совокупного воздействия этих факторов, согласованием их с человеческими возможностями , оптимизацией условий труда занимается эргономика.
Расчет категории тяжести труда.

Тяжесть труда подразделена на 6 категорий в зависимости от изменения функционального состояния человека по сравнению с исходным состоянием покоя. Категория тяжести труда определяется медицинской оценкой или эргономическим расчетом (результаты близки).

Порядок расчета следующий:

Составляется “ Карта условий труда на рабочем месте”, в которую заносят все биологически значимые показатели (факторы) условий труда с оценкой их по 6-ти бальной шкале. Оценка на основе норм и критериев. “Критерии для оценки условий труда по шестибальной системе”.

Баллы рассматриваемых факторов k i суммируют и находят усредненный балл:

k ср = 1/n  i =1 n k i

Определяют интегральный показатель воздействия на человека всех факторов:

k  = 19.7 k ср - 1.6 k ср 2

Показатель работоспособности:

k работ = 100-((k  - 15,6)/0,64)

По интегральному показателю из таблицы находят категорию тяжести труда.

1 категория - оптимальные условия труда, т.е. такие, которые обеспечивают нормальное состояние организма человека. Опасные и вредные факторы отсутствуют. k   18 Работоспособность высокая, отсутствуют функциональные сдвиги по медицинским показателям.

3 категория - на грани допустимых. Если по расчету категория тяжести труда окажется выше 2 кат., то необходимо принимать технические решения по рационализации наиболее тяжелых факторов и доводить их до нормальных.

тяжести труда.

Показатели психофизиологической нагрузки: напряжение органов зрения, слуха, внимания, памяти; количество информации, проходящей через органы слуха, зрения.

Физическая работа оценивается по энергозатратам в Вт:

Условия окруж среды (микроклимат, шум, вибрация, состав воздуха, освещение и др.). Оцениваются по нормам ГОСТов ССБТ.

Безопасность труда (электробезопасность, облучение, взрыво- и пожаробезопасность). Оцениваются по нормам ПТБ и ГОСТов ССБТ.

Информационная нагрузка оператора определяется следующим образом. Афферентные (операции без воздействия.), эфферентные (операции по управлению).

Определяется энтропия (т.е. количество информации, приходящейся на одно сообщение) каждого источника информации:

Hj = -  pi log 2 pi, бит/сигн.

где j - источников информации, в каждом по n сигналов (элементов);

Hj - энтропия одного (j- го) источника информации;

pi = k i /n - вероятность i -го сигнала рассматриваемого источника информации;

n - число сигналов от 1 источника информации;

ki - число повторений одноименных сигналов или однотипных элементов работы.

Определяется энтропия всей системы


    число источников информации.
Допустимой энтропией информации считается 8-16 бит/сигн.

Определяется расчетный поток информации

Фрасч = H  * N/t,

где N - общее число сигналов (элементов) всей операции (системы);

t - длительность операции, сек.

Проверяется условие Фмин  Фрасч  Фмакс, где Фмин =0,4 бит/сек, Фмакс = 3,2 бит/сек – наименьшее и наибольшее допустимые количества информации обрабатываемые оператором.

  1. Кафедра БЖД

    1. Контрольная работа

по дисциплине: Безопасность жизнедеятельности

на тему: Ионизирующие излучения

    1. Пермь, 2004

Введение

Ионизирующим излучением называют излучения, взаимодействие которых со средой приводит к образованию электрических зарядов различных знаков.

Ионизирующее излучение – такое излучение, которым обладают радиоактивные вещества.

Под влиянием ионизирующих излучений у человека возникает лучевая болезнь.

Главной целью радиационной безопасности является охрана здоровья населения, включая персонал, от вредного воздействия ионизирующего излучения путем соблюдения основных принципов и норм радиационной безопасности без необоснованных ограничений полезной деятельности при использовании излучения в различных областях хозяйства, в науке и медицине.

Нормы радиационной безопасности (НРБ-2000) применяются для обеспечения безопасности человека в условиях воздействия на него ионизирующего излучения искусственного или природного происхождения.

Основные характеристики ионизирующих излучений

Ионизирующим излучением называют излучения, взаимодействие которых со средой приводит к образованию электрических зарядов различных знаков. Источники этих излучений широко используются в технике, химии, медицине, сельском хозяйстве и других областях, например при измерении плотности почв, обнаружении течей в газопроводах, измерении толщины листов, труб и стержней, антистатистической обработке тканей, полимеризации пластмасс, радиационной терапии злокачественных опухолей и др. Однако следует помнить, что источники ионизирующего излучения представляют существенную угрозу здоровью и жизни использующих их людей.

Существует 2 вида ионизирующих излучений:

    корпускулярное, состоящее из частиц с массой покоя, отличной от нуля (альфа- и бета-излучение и нейтронное излучение);

    электромагнитное (гамма-излучение и рентгеновское) с очень малой длиной волны.

Альфа-излучение представляет собой поток ядер гелия, обладающих большой скоростью. Эти ядра имеют массу 4 и заряд +2. Они образуются при радиоактивном распаде ядер или при ядерных реакциях. В настоящее время известно более 120 искусственных и естественных альфа-радиоактивных ядер, которые, испуская альфа-частицу, теряют 2 протона и 2 нейрона.

Энергия альфа-частиц не превышает нескольких МэВ (мега-электрон-вольт). Излучаемые альфа-частицы движутся практически прямолинейно со скоростью примерно 20000 км/с.

Под длиной пробега частицы в воздухе или других средах принято называть наибольшее расстояние от источника излучения, при котором еще можно обнаружить частицу до ее поглощения веществом. Длина пробега частицы зависит от заряда, массы, начальной энергии и среды, в которой происходит движение. С возрастанием начальной энергии частицы и уменьшением плотности среды длина пробега увеличивается. Если начальная энергия излучаемых частиц одинакова, то тяжелые частицы обладают меньшими скоростями, чем легкие. Если частицы движутся медленно, то их взаимодействие с атомами вещества среды более эффективно и частицы быстрее растрачивают имеющийся у них запас энергии.

Длина пробега альфа-частиц в воздухе обычно менее 10 см. За счет своей большой массы при взаимодействии с веществом альфа-частицы быстро теряют свою энергию. Это объясняет их низкую проникающую способность и высокую удельную ионизацию: при движении в воздушной среде альфа-частица на 1 см своего пути образует несколько десятков тысяч пар заряженных частиц – ионов.

Бета-излучение представляет собой поток электронов или позитронов, возникающих при радиоактивном распаде. В настоящее время известно около 900 бета-радиоактивных изотопов.

Масса бета-частиц в несколько десятков тысяч раз меньше массы альфа-частиц. В зависимости от природы источника бета-излучений скорость этих частиц может лежать в пределах 0,3 – 0,99 скорости света. Энергия бета-частиц не превышает нескольких МэВ, длина пробега в воздухе составляет приблизительно 1800 см., а в мягких тканях человеческого тела ~ 2,5 см. Проникающая способность бета-частиц, выше, чем альфа-частиц (из-за меньших массы и заряда).

Нейтронное излучение представляет собой поток ядерных частиц, не имеющих электрического заряда. Масса нейтрона приблизительно в 4 раза меньше массы альфа-частиц. В зависимости от энергии различают медленные нейтроны (с энергией менее 1 КэВ (кило-электрон-Вольт) = 10 3 эВ), нейтроны промежуточных энергий (от 1 до 500 КэВ) и быстрые нейтроны (от 500 КэВ до 20 МэВ). При неупругом взаимодействии нейтронов с ядрами атомов среды возникает вторичное излучение, состоящее из заряженных частиц и гамма-квантов (гамма-излучение). При упругих взаимодействиях нейтронов с ядрами может наблюдаться обычная ионизация вещества. Проникающая способность нейтронов зависит от их энергии, но она существенно выше, чем у альфа- или бета-частиц. Нейтронное излучение обладает высокой проникающей способностью и представляет для человека наибольшую опасность из всех видов корпускулярного излучения. Мощность нейтронного потока измеряется плотность потока нейтронов.

Гамма-излучение представляет собой электромагнитное излучение с высокой энергией и с малой длиной волны. Оно испускается при ядерных превращениях или взаимодействии частиц. Высокая энергия (0,01 – 3 МэВ) и малая длина волны обусловливает большую проникающую способность гамма-излучения. Гамма-лучи не отклоняются в электрических и магнитных полях. Это излучение обладает меньшей ионизирующей способностью, чем альфа- и бета-излучение.

Рентгеновское излучение может быть получено в специальных рентгеновских трубах, в ускорителях электронов, в среде, окружающей источник бета-излучения, и др. Рентгеновское излучение представляет собой один из видов электромагнитного излучения. Энергия его обычно не превышает 1 МэВ. Рентгеновское излучение, как и гамма-излучение, обладает малой ионизирующей способностью и большой глубиной проникновения.

Для характеристики воздействия ионизирующего излучения на вещество введено понятие дозы излучения. Дозой излучения – называется часть энергии, переданная излучением веществу и поглощенная им. Количественной характеристикой взаимодействия ионизирующего излучения и вещества является поглощенная доза излучения (Д), равная отношению средней энергии dE, переданной ионизирующим излучением веществу в элементарном объеме, к массе облученного вещества в этом объеме dm:

До недавнего времени за количественную характеристику только рентгеновского и гамма-излучения, основанную на их ионизирующем действии, принималась экспозиционная доза Х – отношение полного электрического заряда dQ ионов одного знака, возникающих в малом объеме сухого воздуха, к массе воздуха dm в этом объеме, т.е.

Для оценки возможного ущерба здоровья при хроническом воздействии ионизирующего излучения произвольного состава введено понятие эквивалентной дозы (Н). Эта величина определяется как произведение поглощенной дозы Д на средний коэффициент качества излучения Q (безразмерный) в данной точке ткани человеческого тела, т.е.:

Существует еще одна характеристика ионизирующего излучения – мощность дозы Х (соответственно поглощенной, экспозиционной или эквивалентной) представляющая собой приращение дозы за малый промежуток времени dx, деленное на этот промежуток dt. Так, мощность экспозиционной дозы (х или w, Кл / кг · с) составит:

Х = W = dx / dt

Биологическое действие рассмотренных излучений на организм человека различно.

Альфа-частицы, проходя через вещество и сталкиваясь с атомами, ионизируют (заряжают) их, выбивая электроны. В редких случаях эти частицы поглощаются ядрами атомов, переводя их в состояние с большей энергией. Эта избыточная энергия способствует протеканию различных химических реакций, которые без облучения не идут или идут очень медленно. Альфа-излучение производит сильное действие на органические вещества, из которых состоит человеческий организм (жиры, белки и углеводы). На слизистых оболочках это излучение вызывает ожоги и другие воспалительные процессы.

Под действием бета-излучений происходит радиолиз (разложение) воды, содержащейся в биологических тканях, с образованием водорода, кислорода, пероксида водорода H 2 O 2 , заряженных частиц (ионов) OH – и HO – 2 . Продукты разложения воды обладают окислительными свойствами и вызывают разрушение многих органических веществ, из которых состоят ткани человеческого организма.

Действие гамма- и рентгеновского излучений на биологические ткани обусловлено в основном образующимися свободными электронами. Нейтроны, проходя через вещество, производят в нем наиболее сильные изменения по сравнению с другими ионизирующими излучениями.

Таким образом, биологическое действие ионизирующих излучений сводится к изменению структуры или разрушению различных органических веществ (молекул), из которых состоит организм человека. Это приводит к нарушению биохимических процессов, протекающих в клетках, или даже к их гибели, в результате чего происходит поражение организма в целом.

Различают внешнее и внутреннее облучение организма. Под внешним облучениемпонимают воздействие на организм ионизирующих излучений от внешних по отношению к нему источников.Внутреннее облучениеосуществляется радиоактивными веществами, попавшими внутрь организма через дыхательные органы, желудочно-кишечный тракт или через кожные покровы. Источники внешнего излучения – космические лучи, естественные радиоактивные источники, находящиеся в атмосфере, воде, почве, продуктах питания и др., источники альфа-, бета-, гамма, рентгеновского и нейтронного излучений, используемые в технике и медицине, ускорители заряженных частиц, ядерные реакторы (в том числе и аварии на ядерных реакторах) и ряд других.

Радиоактивные вещества, вызывающие внутреннее облучение организма, попадают в него при приеме пищи, курении, питье загрязненной воды. Поступление радиоактивных веществ в человеческий организм через кожу происходит в редких случаях (если кожа имеет повреждения или открытые раны). Внутреннее облучение организма длится до тех пор, пока радиоактивное вещество не распадется или не будет выведено из организма в результате процессов физиологического обмена. Внутреннее облучение опасно тем, что вызывает длительно незаживающие язвы различных органов и злокачественные опухоли.

При работе с радиоактивными веществами значительному облучению подвергаются руки операторов. Под действием ионизирующих излучений развивается хроническое или острое (лучевой ожог) поражение кожи рук. Хроническое поражение характеризуется сухостью кожи, появлением на ней трещин, изъявлением и другими симптомами. При остром поражении кистей рук возникают отеки, омертвление тканей, язвы, на месте образования которых возможно развитие злокачественных опухолей.

Под влиянием ионизирующих излучений у человека возникает лучевая болезнь. Различают три степени ее: первая (легкая), вторая и третья (тяжелая).

Симптомами лучевой болезни первой степени являются слабость, головные боли, нарушение сна и аппетита, которые усиливаются на второй стадии заболевания, но к ним дополнительно присоединяются нарушения в деятельности сердечно-сосудистой системы, изменяется обмен веществ и состав крови, происходит расстройство пищеварительных органов. На третьей стадии болезни наблюдаются кровоизлияния выпадение волос, нарушается деятельность центральной нервной системы и половых желез. У людей, перенесших лучевую болезнь, повышается вероятность развития злокачественных опухолей и заболеваний кроветворных органов. Лучевая болезнь в острой (тяжелой) форме развивается в результате облучения организма большими дозами ионизирующих излучений за короткий промежуток времени. Опасно воздействие на организм человека и малых доз радиации, так как при этом могут произойти нарушение наследственной информации человеческого организма, возникнуть мутации.

Низкий уровень развития легкой формы лучевой болезни возникает при эквивалентной дозе облучения приблизительно 1 Зв, тяжелая форма лучевой болезни, при которой погибает половина всех облученных, наступает при эквивалентной дозе облучения 4,5 Зв. 100%-ный смертельный исход лучевой болезни соответствует эквивалентной дозе облучения 5,5–7,0 Зв.

В настоящее время разработан ряд химических препаратов (протекторов), существенно снижающих негативный эффект воздействия ионизирующего излучения на организм человека.

В России предельно допустимые уровни ионизирующего облучения и принципы радиационной безопасности регламентируются «Нормами радиационной безопасности» НРБ-76, «Основными санитарными правилами работы с радиоактивными веществами и другими источниками ионизирующих излучений» ОСП72-80. В соответствии с этими нормативными документами нормы облучения установлены для следующих трех категорий лиц:

Для лиц категории А основным дозовым пределом является индивидуальная эквивалентная доза внешнего и внутреннего излучения за год (Зв/год) в зависимости от радиочувствительности органов (критические органы). Это предельно допустимая доза (ПДД) – наибольшее значение индивидуальной эквивалентной дозы за год, которое при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья персонала неблагоприятных изменений, обнаруживаемых современными методами.

Для персонала категории А индивидуальная эквивалентная доза (Н , Зв), накопленная в критическом органе за времяТ (лет) с начала профессиональной работы, не должна превышать значения, определяемого по формуле:

Н = ПДД ∙ Т . Кроме того, доза, накопленная к 30 годам, не должна превышать 12 ПДД.

Для категории Б установлен предел дозы за год (ПД, Зв/год), под которым понимают наибольшее среднее значение индивидуальной эквивалентной дозы за календарный год у критической группы лиц, при котором равномерное облучение в течении 70 лет не может вызвать в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами. В табл.1 приведены основные дозовые пределы внешнего и внутреннего облучений в зависимости от радиочувствительности органов.

Таблица 1 – Основные значения дозовых пределов внешнего и внутреннего облучений

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Источники электромагнитных излучений

Известно, что около проводника, по которому протекает ток, возникают одновременно электрическое и магнитное поля. Если ток не меняется во времени, эти поля не зависят друг от друга. При переменном токе магнитное и электрическое поля связаны между собой, представляя единое электромагнитное поле.

Электромагнитное поле обладает определённой энергией и характеризуется электрической и магнитной напряжённостью, что необходимо учитывать при оценке условий труда.

Источниками электромагнитных излучений служат радиотехнические и электронные устройства, индукторы, конденсаторы термических установок, трансформаторы, антенны, фланцевые соединения волноводных трактов, генераторы сверхвысоких частот и др.

Современные геодезические, астрономические, гравиметрические, аэрофотосъёмочные, морские геодезические, инженерно-геодезические, геофизические работы выполняются с использованием приборов, работающих в диапазоне электромагнитных волн, ультравысокой и сверхвысокой частот, подвергая работающих опасности с интенсивностью облучения до 10 мкВт/см2.

Биологическое действие электромагнитных излучений

Электромагнитные поля человек не видит и не чувствует и именно поэтому не всегда предостерегается от опасного воздействия этих полей. Электромагнитные излучения оказывают вредное воздействие на организм человека. В крови, являющейся электролитом, под влиянием электромагнитных излучений возникают ионные токи, вызывающие нагрев тканей. При определённой интенсивности излучения, называемой тепловым порогом, организм может не справиться с образующимся теплом.

Нагрев особенно опасен для органов со слаборазвитой сосудистой системой с неинтенсивным кровообращением (глаза, мозг, желудок и др.). При облучении глаз в течение нескольких дней возможно помутнение хрусталика, что может вызвать катаракту.

Кроме теплового воздействия электромагнитные излучения оказывают неблагоприятное влияние на нервную систему, вызывают нарушение функций сердечно-сосудистой системы, обмена веществ.

Длительное воздействие электромагнитного поля на человека вызывает повышенную утомляемость, приводит к снижению качества выполнения рабочих операций, сильным болям в области сердца, изменению кровяного давления и пульса.

Оценка опасности воздействия электромагнитного поля на человека производится по величине электромагнитной энергии, поглощённой телом человека.

3.2.1.2 Электрические поля токов промышленной частоты

Установлено, что негативное воздействие на организм работающих оказывают и электромагнитные поля токов промышленной частоты (характеризуются частотой колебаний от 3 до 300 Гц). Неблагоприятные воздействия токов промышленной частоты проявляются только при напряжённости магнитного поля порядка 160-200 А/м. Зачастую магнитная напряжённость поля не превышает 20-25 А/м, поэтому оценку опасности воздействия электромагнитного поля достаточно производить по величине электрической напряжённости поля.

Для измерения напряжённости электрического и магнитного полей используют приборы типа "ИЭМП-2". Плотность потока излучения измеряют различного рода радар-тестерами и термисторными измерителями малой мощности, например, "45-М", "ВИМ" и др.

Защита от электрических полей

В соответствии со стандартом "ГОСТ 12.1.002-84 ССБТ. Электрические поля промышленной частоты. Допустимые уровни напряжённости и требования к проведению контроля на рабочих местах." нормы допустимых уровней напряжённости электрических полей зависят от времени пребывания человека в опасной зоне. Присутствие персонала на рабочем месте в течение 8 часов допускается при напряжённости электрического поля (Е), не превышающей 5 кВ/м. При значениях напряжённости электрического поля 5-20 кВ/м время допустимого пребывания в рабочей зоне в часах составляет:

Т=50/Е-2. (3.1)

Работа в условиях облучения электрическим полем с напряжённостью 20-25 кВ/м должна продолжаться не более 10 минут.

В рабочей зоне, характеризуемой различными значениями напряжённости электрического поля, пребывание персонала ограничивается временем (в часах):

где и ТЕ - соответственно фактическое и допустимое время пребывания персонала (ч), в контролируемых зонах с напряжённостями Е1, Е2, ..., Еn.

Основными видами средств коллективной защиты от воздействия электрического поля токов промышленной частоты являются экранирующие устройства. Экранирование может быть общим и раздельным. При общем экранировании высокочастотную установку закрывают металлическим кожухом - колпаком. Управление установкой осуществляется через окна в стенках кожуха. В целях безопасности кожух контактируют с заземлением установки. Второй вид общего экранирования - изоляция высокочастотной установки в отдельное помещение с дистанционным управлением.

Конструктивно экранирующие устройства могут быть выполнены в виде козырьков, навесов или перегородок из металлических канатов, прутьев, сеток. Переносные экраны могут быть оформлены в виде съёмных козырьков, палаток, щитов и др. Экраны изготовляют из листового металла толщиной не менее 0,5 мм.

Наряду со стационарными и переносными экранирующими устройствами применяют индивидуальные экранирующие комплекты. Они предназначены для защиты от воздействия электрического поля, напряжённость которого не превышает 60 кВ/м. В состав индивидуальных экранирующих комплектов входят: спецодежда, спецобувь, средства защиты головы, а также рук и лица. Составные элементы комплектов снабжены контактными выводами, соединение которых позволяет обеспечить единую электрическую сеть и осуществить качественное заземление (чаще через обувь).

Периодически проводится проверка технического состояния экранирующих комплектов. Результаты проверки регистрируются в специальном журнале.

Полевые топографо-геодезические работы могут проводиться вблизи линий электропередачи. Электромагнитные поля воздушных линий электропередачи высокого и сверхвысокого напряжений характеризуются напряжённостью магнитной и электрической, составляющих соответственно до 25 А/м и 15 кВ/м (иногда на высоте 1,5-2,0 м от земли). Поэтому в целях уменьшения негативного воздействия на здоровье, при производстве полевых работ вблизи линий электропередачи напряжением 400 кВ и выше, необходимо либо ограничивать время пребывания в опасной зоне, либо применять индивидуальные средства защиты.

3.2.1.3 Электромагнитные поля радиочастот

Источники электромагнитных полей радиочастот

Источниками возникновения электромагнитных полей радиочастот являются: радиовещание, телевидение, радиолокация, радиоуправление, закалка и плавка металлов, сварка неметаллов, электроразведка в геологии (радиоволновое просвечивание, методы индукции и др.), радиосвязь и др.

Электромагнитная энергия низкой частоты 1-12 кГц широко используется в промышленности для индукционного нагрева с целью закалки, плавки, нагрева металла.

Энергия импульсивного электромагнитного поля низких частот применяется для штамповки, прессовки, для соединения различных материалов, литья и др.

При диэлектрическом нагреве (сушка влажных материалов, склейка древесины, нагрев, термофиксация, плавка пластмасс) используются установки в диапазоне частот от 3 до 150 МГц.

Ультравысокие частоты используются в радиосвязи, медицине, радиовещании, телевидении и др. Работы с источниками сверхвысокой частоты осуществляются в радиолокации, радионавигации, радиоастрономии и др.

Биологическое действие электромагнитных полей радиочастот

По субъективным ощущениям и объективным реакциям организма человека не наблюдается особых различий при воздействии всего диапазона радиоволн ВЧ, УВЧ и СВЧ, но более характерны проявления и неблагоприятны последствия воздействий СВЧ электромагнитных волн.

Наиболее характерными при воздействии радиоволн всех диапазонов являются отклонения от нормального состояния центральной нервной системы и сердечно-сосудистой системы человека. Общим в характере биологического действия электромагнитных полей радиочастот большой интенсивности является тепловой эффект, который выражается в нагреве отдельных тканей или органов. Особенно чувствительны к тепловому эффекту хрусталик глаза, желчный пузырь, мочевой пузырь и некоторые другие органы.

Субъективными ощущениями облучаемого персонала являются жалобы на частую головную боль, сонливость или бессонницу, утомляемость, вялость, слабость, повышенную потливость, потемнение в глазах, рассеянность, головокружение, снижение памяти, беспричинное чувство тревоги, страха и др.

К числу перечисленных неблагоприятных воздействий на человека следует добавить мутагенное действие, а также временную стерилизацию при облучении интенсивностями выше теплового порога.

Для оценки потенциальных неблагоприятных воздействий электромагнитных волн радиочастот приняты допустимые энергетические характеристики электромагнитного поля для различного диапазона частот - электрическая и магнитная напряжённости, плотность потока энергии.

Защита от электромагнитных полей радиочастот

Для обеспечения безопасности работ с источниками электромагнитных волн проводится систематический контроль фактических значений нормируемых параметров на рабочих местах и в местах возможного нахождения персонала. Если условия работы не удовлетворяют требованиям норм, то применяются следующие способы защиты:

1. Экранирование рабочего места или источника излучения.

2. Увеличение расстояния от рабочего места до источника излучения.

3. Рациональное размещение оборудования в рабочем помещении.

4. Использование средств предупредительной защиты.

5. Применение специальных поглотителей мощности энергии для уменьшения излучения в источнике.

6. Использование возможностей дистанционного управления и автоматического контроля и др.

Рабочие места обычно располагают в зоне минимальной интенсивности электромагнитного поля. Конечным звеном в цепи инженерных средств защиты являются средства индивидуальной защиты. В качестве индивидуальных средств защиты глаз от действия СВЧ-излучений рекомендуются специальные защитные очки, стёкла которых покрыты тонким слоем металла (золота, диоксида олова).

Защитная одежда изготовляется из металлизированной ткани и применяется в виде комбинезонов, халатов, курток с капюшонами, с вмонтированными в них защитными очками. Применение специальных тканей в защитной одежде позволяет снизить облучение в 100-1000 раз, то есть на 20-30 децибел (дБ). Защитные очки снижают интенсивность излучения на 20-25 дБ.

В целях предупреждения профессиональных заболеваний необходимо проводить предварительные и периодические медицинские осмотры. Женщин в период беременности и кормления грудью следует переводить на другие работы. Лица, не достигшие 18-летнего возраста, к работе с генераторами радиочастот не допускаются. Лицам, имеющим контакт с источниками СВЧ- и УВЧ-излучений, предоставляются льготы (сокращённый рабочий день, дополнительный отпуск).

Ионизирующее излучение

Ионизирующие излучения -- это электромагнитные излучения, которые создаются при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образуют при взаимодействии со средой ионы различных знаков.

Источники ионизирующих излучений. На производстве источниками ионизирующих излучений могут быть используемые в технологических процессах радиоактивные изотопы (радионуклиды) естественного или искусственного происхождения, ускорительные установки, рентгеновские аппараты, радиолампы.

Искусственные радионуклиды в результате ядерных превращений в тепловыделяющих элементах ядерных реакторов после специального радиохимического разделения находят применение в экономике страны. В промышленности искусственные радионуклиды применяются для дефектоскопии металлов, при изучении структуры и износа материалов, в аппаратах и приборах, выполняющих контрольно-сигнальные функции, в качестве средства гашения статического электричества и т. п.

Естественными радиоактивными элементами называют радионуклиды, образующиеся из находящихся в природе радиоактивных тория, урана и актиния.

Виды ионизирующих излучений. В решении производственных задач имеют место разновидности ионизирующих излучений как (корпускулярные потоки альфа-частиц, электронов (бета-частиц), нейтронов) и фотонные (тормозное, рентгеновское и гамма-излучение).

Альфа-излучение представляет собой поток ядер гелия, испускаемых главным образом естественным радионуклидом при радиоактивном распаде, Пробег альфа-частиц в воздухе достигает 8--10 см, в биологической ткани нескольких десятков микрометров. Так как пробег альфа-частиц в веществе невелик, а энергия очень большая, то плотность ионизации на единицу длины пробега у них очень высока.

Бета-излучение -- поток электронов или позитронов при радиоактивном распаде. Энергия бета-излучения не превышает нескольких Мэв. Пробег в воздухе составляет от 0,5 до 2 м, в живых тканях -- 2-- 3 см. Их ионизирующая способность ниже альфа-частиц.

Нейтроны -- нейтральные частицы, имеющие массу атома водорода. Они при взаимодействии с веществом теряют свою энергию в упругих (по типу взаимодействия биллиардных шаров) и неупругих столкновениях (удар шарика в подушку).

Гамма-излучение -- фотонное излучение, возникающее при изменении энергетического состояния атомных ядер, при ядерных превращениях или при аннигиляции частиц. Источники гамма-излучения, используемые в промышленности, имеют энергию от 0,01 до 3 Мэв. Гамма-излучение обладает высокой проникающей способностью и малым ионизирующим действием.

Рентгеновское излучение -- фотонное излучение, состоящее из тормозного и (или) характеристического излучения, возникает в рентгеновских трубах, ускорителях электронов, с энергией фотонов не более 1 Мэв. Рентгеновское излучение, так же как и гамма-излучение, имеет высокую проникающую способность и малую плотность ионизации среды.

Ионизирующего излучения характеризуется целым рядом специальных характеристик. Количество радионуклида принято называть активностью. Активность -- число самопроизвольных распадов радионуклида за единицу времени.

Единицей измерения активности в системе СИ является беккерель (Бк).

1Бк = 1 распад/с.

Внесистемной единицей активности является ранее используемая величина Кюри (Ки). 1Ки = 3,7 * 10 10 Бк.

Дозы излучения. Когда ионизирующее излучение проходит через вещество, то на него оказывает воздействие только та часть энергии излучения, которая передается веществу, поглощается им. Порция энергии, переданная излучением веществу, называется дозой. Количественной характеристикой взаимодействия ионизирующего излучения с веществом является поглощенная доза.

Поглощенная доза D n -- это отношение средней энергии?E , переданной ионизирующим излучением веществу в элементарном объеме, к единице массы?m вещества в этом объеме

В системе СИ в качестве единицы поглощенной дозы принят грей (Гр), названный в честь английского физика и радиобиолога Л. Грея. 1 Гр соответствует поглощению в среднем 1 Дж энергии ионизирующего излучения в массе вещества, равной 1 кг; 1 Гр = 1 Дж/кг.

Доза эквивалентная Н T,R - поглощенная доза в органе или ткани D n , умноженная на соответствующий взвешивающий коэффициент для данного излучения W R

Н T,R = W R * D n ,

Единицей измерения эквивалентной дозы является Дж/кг, имеющий специальное наименование - зиверт (Зв).

Значения W R для фотонов, электронов и мюонов любых энергий составляет 1, а для Ь- частиц, осколков тяжелых ядер - 20.

Биологическое действие ионизирующих излучений. Биологическое действие радиации на живой организм начинается на клеточном уровне. Живой организм состоит из клеток. Ядро считается наиболее чувствительной жизненно важной частью клетки, а основными его структурными элементами являются хромосомы. В основе строения хромосом находится молекула диоксирибонуклеиновой кислоты (ДНК), в которой заключена наследственная информация организма. Гены расположены в хромосомах в строго определенном порядке и каждому организму соответствует определенный набор хромосом в каждой клетке. У человека каждая клетка содержит 23 пары хромосом. Ионизирующее излучение вызывает поломку хромосом за которым происходит соединение разорванных концов в новые сочетания. Это и приводит к изменению генного аппарата и образованию дочерних клеток, неодинаковых с исходными. Если стойкие хромосомные поломки происходят в половых клетках, то это ведет к мутациям, т. е. появлению у облученных особей потомства с другими признаками. Мутации полезны, если они приводят к повышению жизнестойкости организма, и вредны, если проявляются в виде различных врожденных пороков. Практика показывает, что при действии ионизирующих излучений вероятность возникновения полезных мутаций мала.

Помимо генетических эффектов, которые могут сказываться на последующих поколениях (врожденные уродства), наблюдаются и так называемые соматические (телесные) эффекты, которые опасны не только для самого данного организма (соматическая мутация), но и его потомства. Соматическая мутация распространяется только на определенный круг клеток, образовавшихся путем обычного деления из первичной клетки, претерпевшей мутацию.

Соматические повреждения организма ионизирующим излучением являются результатом воздействия излучения на большой комплекс -- коллективы клеток, образующих определенные ткани или органы. Радиация тормозит или даже полностью останавливает процесс деления клеток, в котором собственно и проявляется их жизнь, а достаточно сильное излучение в конце концов убивает клетки. К соматическим эффектам относят локальное повреждение кожи (лучевой ожог), катаракту глаз (помутнение хрусталика), повреждение половых органов (кратковременная или постоянная стерилизация) и др.

Установлено, что не существует минимального уровня радиации, ниже которого мутации не происходит. Общее количество мутаций, вызванных ионизирующим излучением, пропорционально численности населения и средней дозе облучения. Проявление генетических эффектов мало зависит от мощности дозы, а определяется суммарной накопленной дозой независимо от того, получена она за 1 сутки или 50 лет. Полагают, что генетические эффекты не имеют дозового порога. Генетические эффекты определяются только эффективной коллективной дозой человеко-зиверты (чел-Зв), а выявление эффекта у отдельного индивидуума практически непредсказуемо.

В отличие от генетических эффектов, которые вызываются малыми дозами радиации, соматические эффекты всегда начинаются с определенной пороговой дозы: при меньших дозах повреждения организма не происходит. Другое отличие соматических повреждений от генетических заключается в том, что организм способен со временем преодолевать последствия облучения, тогда как клеточные повреждения необратимы.

К основным правовым нормативам в области радиационной безопасности относятся Федеральный закон «О радиационной безопасности населения» №3-ФЗ от 09.01.96 г., Федеральный закон «О санитарно-эпиде-миологическом благополучии населения» № 52-ФЗ от 30.03.99 г., Федеральный закон «Об использовании атомной энергии» № 170-ФЗ от 21.11.95 г., а также Нормы радиационной безопасности (НРБ--99). Документ относится к категории санитарных правил (СП 2.6.1.758 -- 99),утвержден Главным государственным санитарным врачом Российской Федерации 2 июля 1999 года и введен в действие с 1 января 2000 года.

Нормы радиационной безопасности включают в себя термины и определения, которые необходимо использовать в решении проблем радиационной безопасности. Они также устанавливают три класса нормативов: основные дозовые пределы; допустимые уровни, являющиеся производными от дозовых пределов; пределы годового поступления, объемные допустимые среднегодовые поступления, удельные активности, допустимые уровни загрязнения рабочих поверхностей и т. д.; контрольные уровни.

Нормирование ионизирующих излучений определяется характером воздействия ионизирующей радиации на организм человека. При этом выделяются два вида эффектов, относящихся в медицинской практике к болезням: детерминированные пороговые эффекты (лучевая болезнь, лучевой ожог, лучевая катаракта, аномалии развития плода и др.) и стохастические (вероятностные) беспороговые эффекты (злокачественные опухоли, лейкозы, наследственные болезни).

Обеспечение радиационной безопасности определяется следующими основными принципами:

1. Принцип нормирования -- непревышение допустимых пределов индивидуальных доз облучения граждан от всех источников ионизирующего излучения.

2. Принцип обоснования -- запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному радиационному фону облучения.

3. Принцип оптимизации -- поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения.

Приборы контроля ионизирующих излучений. Все используемые в настоящее время приборы можно разбить на три основные группы: радиометры, дозиметры и спектрометры. Радиометры предназначены для измерения плотности потока ионизирующего излучения (альфа- или бета-), а также нейтронов. Эти приборы широко используются для измерения загрязнений рабочих поверхностей, оборудования, кожных покровов и одежды персонала. Дозиметры предназначены для изменения дозы и мощности дозы, получаемой персоналом при внешнем облучении главным образом гамма-излучением. Спектрометры предназначены для идентификации загрязнений по их энергетическим характеристикам. В практике применяются гамма-, бета- и альфа-спектрометры.

Обеспечение безопасности при работе с ионизирующими излучениями. Все работы с радионуклидами правила подразделяют на два вида: на работу с закрытыми источниками ионизирующих излучений и работу с открытыми радиоактивными источниками.

Закрытыми источниками ионизирующих излучений называются любые источники, устройство которых исключает попадание радиоактивных веществ в воздух рабочей зоны. Открытые источники ионизирующих излучений способны загрязнять воздух рабочей зоны. Поэтому отдельно разработаны требования к безопасной работе с закрытыми и открытыми источниками ионизирующих излучений на производстве.

Главной опасностью закрытых источников ионизирующих излучений является внешнее облучение, определяемое видом излучения, активностью источника, плотностью потока излучения и создаваемой им дозой облучения и поглощенной дозой. Основные принципы обеспечения радиационной безопасности:

Уменьшение мощности источников до минимальных величин (защита, количеством); сокращение времени работы с источниками (защита временем); увеличение расстояния от источника до работающих (защита расстоянием) и экранирование источников излучения материалами, поглощающими ионизирующие излучения (защита экранами).

Защита экранами -- наиболее эффективный способ защиты от излучений. В зависимости от вида ионизирующих излучений для изготовления экранов применяют различные материалы, а их толщина определяется мощностью излучения. Лучшими экранами для защиты от рентгеновского и гамма-излучений является свинец, позволяющий добиться нужного эффекта по кратности ослабления при наименьшей толщине экрана. Более дешевые экраны делаются из просвинцованного стекла, железа, бетона, барритобетона, железобетона и воды.

Защита от открытых источников ионизирующих излучений предусматривает как защиту от внешнего облучения, так и защиту персонала от внутреннего облучения, связанного с возможным проникновением радиоактивных веществ в организм через органы дыхания, пищеварения или через кожу. Способы защиты персонала при этом следующие.

1. Использование принципов защиты, применяемых при работе с источниками излучения в закрытом виде.

2. Герметизация производственного оборудования с целью изоляции процессов, которые могут явиться источниками поступления радиоактивных веществ во внешнюю среду.

3. Мероприятия планировочного характера. Планировка помещении предполагает максимальную изоляцию работ с радиоактивными веществами от других помещений и участков, имеющих иное функциональное назначение.

4. Применение санитарно-гигиенических устройств и оборудования, использование специальных защитных материалов.

5. Использование средств индивидуальной защиты персонала. Все средства индивидуальной защиты, используемые для работы с открытыми источниками, разделяются на пять видов: спецодежда, спецобувь, средства защиты органов дыхания, изолирующие костюмы, дополнительные защитные приспособления.

6. Выполнение правил личной гигиены. Эти правила предусматривают личностные требования к работающим с источниками ионизирующих излучений: запрещение курения в рабочей зоне, тщательная очистка (дезактивация) кожных покровов после окончания работы, проведение дозиметрического контроля загрязнения спецодежды, спецобуви и кожных покровов. Все эти меры предполагают исключение возможности проникновения радиоактивных веществ внутрь организма.

Службы радиационной безопасности. Безопасность работы с источниками ионизирующих излучений на предприятиях контролируют специализированные службы -- службы радиационной безопасности комплектуются из лиц, прошедших специальную подготовку в средних, высших учебных заведениях или специализированных курсах Минатома РФ. Эти службы оснащены необходимыми приборами и оборудованием, позволяющими решать поставленные перед ними задачи.

Основные задачи, определяемые национальным законодательством по контролю радиационной обстановки в зависимости от характера проводимых работ, следующие:

Контроль мощности дозы рентгеновского и гамма-излучений, потоков бета-частиц, нитронов, корпускулярных излучений на рабочих местах, смежных помещениях и на территории предприятия и наблюдаемой зоны;

Контроль за содержанием радиоактивных газов и аэрозолей в воздухе рабочих и других помещений предприятия;

Контроль индивидуального облучения в зависимости от характера работ: индивидуальный контроль внешнего облучения, контроль за содержанием радиоактивных веществ в организме или в отдельном критическом органе;

Контроль за величиной выброса радиоактивных веществ в атмосферу;

Контроль за содержанием радиоактивных веществ в сточных водах, сбрасываемых непосредственно в канализацию;

Контроль за сбором, удалением и обезвреживанием радиоактивных твердых и жидких отходов;

Контроль уровня загрязнения объектов внешней среды за пределами предприятия.