Формула длины вектора через его координаты. Векторы на ЕГЭ по математике. Действия над векторами

Многие физические величины полностью определяются заданием некоторого числа. Это, например, объем, масса, плотность, температура тела и др. Такие величины называются скалярными. В связи с этим числа иногда называют скалярами. Но есть и такие величины, которые определяются заданием не только числа, но и некоторого направления. Например, при движении тела следует указать не только скорость, с которой движется тело, но и направление движения. Точно так же, изучая действие какой-либо силы, необходимо указать не только значение этой силы, но и направление ее действия. Такие величины называются векторными. Для их описания было введено понятие вектора, оказавшееся полезным для математики.

Определение вектора

Любая упорядоченная пара точек А к В пространства определяет направленный отрезок , т.е. отрезок вместе с заданным на нем направлением. Если точка А первая, то ее называют началом направленного отрезка, а точку В - его концом. Направлением отрезка считают направление от начала к концу.

Определение
Направленный отрезок называется вектором.

Будем обозначать вектор символом \(\overrightarrow{AB} \), причем первая буква означает начало вектора, а вторая - его конец.

Вектор, у которого начало и конец совпадают, называется нулевым и обозначается \(\vec{0} \) или просто 0.

Расстояние между началом и концом вектора называется его длиной и обозначается \(|\overrightarrow{AB}| \) или \(|\vec{a}| \).

Векторы \(\vec{a} \) и \(\vec{b} \) называются коллинеарными , если они лежат на одной прямой или на параллельных прямых. Коллинеарные векторы могут быть направлены одинаково или противоположно.

Теперь можно сформулировать важное понятие равенства двух векторов.

Определение
Векторы \(\vec{a} \) и \(\vec{b} \) называются равными (\(\vec{a} = \vec{b} \)), если они коллинеарны, одинаково направлены и их длины равны.

На рис. 1 изображены слева неравные, а справа - равные векторы \(\vec{a} \) и \(\vec{b} \). Из определения равенства векторов следует, что если данный вектор перенести параллельно самому себе, то получится вектор, равный данному. В связи с этим векторы в аналитической геометрии называют свободными.

Проекция вектора на ось

Пусть в пространстве заданы ось \(u \) и некоторый вектор \(\overrightarrow{AB} \). Проведем через точки А и В плоскости, перпендикулярные оси \(u \). Обозначим через А" и В" точки пересечения этих плоскостей с осью (см. рисунок 2).

Проекцией вектора \(\overrightarrow{AB} \) на ось \(u \) называется величина А"В" направленного отрезка А"В" на оси \(u \). Напомним, что
\(A"B" = |\overrightarrow{A"B"}| \) , если направление \(\overrightarrow{A"B"} \) совпадает c направлением оси \(u \),
\(A"B" = -|\overrightarrow{A"B"}| \) , если направление \(\overrightarrow{A"B"} \) противоположно направлению оси \(u \),
Обозначается проекция вектора \(\overrightarrow{AB} \) на ось \(u \) так: \(Пр_u \overrightarrow{AB} \).

Теорема
Проекция вектора \(\overrightarrow{AB} \) на ось \(u \) равна длине вектора \(\overrightarrow{AB} \) , умноженной на косинус угла между вектором \(\overrightarrow{AB} \) и осью \(u \) , т.е.

\(Пр_u \overrightarrow{AB} = |\overrightarrow{AB}|\cos \varphi \) где \(\varphi \) - угол между вектором \(\overrightarrow{AB} \) и осью \(u \).

Замечание
Пусть \(\overrightarrow{A_1B_1}=\overrightarrow{A_2B_2} \) и задана какая-то ось \(u \). Применяя к каждому из этих векторов формулу теоремы, получаем

\(Пр_u \overrightarrow{A_1B_1} = Пр_u \overrightarrow{A_2B_2} \) т.е. равные векторы имеют равные проекции на одну и ту же ось.

Проекции вектора на оси координат

Пусть в пространстве заданы прямоугольная система координат Oxyz и произвольный вектор \(\overrightarrow{AB} \). Пусть, далее, \(X = Пр_u \overrightarrow{AB}, \;\; Y = Пр_u \overrightarrow{AB}, \;\; Z = Пр_u \overrightarrow{AB} \). Проекции X, Y, Z вектора \(\overrightarrow{AB} \) на оси координат называют его координатами. При этом пишут
\(\overrightarrow{AB} = (X;Y;Z) \)

Теорема
Каковы бы ни были две точки A(x 1 ; y 1 ; z 1) и B(x 2 ; y 2 ; z 2), координаты вектора \(\overrightarrow{AB} \) определяются следующими формулами:

X = x 2 -x 1 , Y = y 2 -y 1 , Z = z 2 -z 1

Замечание
Если вектор \(\overrightarrow{AB} \) выходит из начала координат, т.е. x 2 = x, y 2 = y, z 2 = z, то координаты X, Y, Z вектора \(\overrightarrow{AB} \) равны координатам его конца:
X = x, Y = y, Z = z.

Направляющие косинусы вектора

Пусть дан произвольный вектор \(\vec{a} = (X;Y;Z) \); будем считать, что \(\vec{a} \) выходит из начала координат и не лежит ни в одной координатной плоскости. Проведем через точку А плоскости, перпендикулярные осям. Вместе с координатными плоскостями они образуют прямоугольный параллелепипед, диагональю которого служит отрезок ОА (см. рисунок).

Из элементарной геометрии известно, что квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин трех его измерений. Следовательно,
\(|OA|^2 = |OA_x|^2 + |OA_y|^2 + |OA_z|^2 \)
Но \(|OA| = |\vec{a}|, \;\; |OA_x| = |X|, \;\; |OA_y| = |Y|, \;\;|OA_z| = |Z| \); таким образом, получаем
\(|\vec{a}|^2 = X^2 + Y^2 + Z^2 \)
или
\(|\vec{a}| = \sqrt{X^2 + Y^2 + Z^2} \)
Эта формула выражает длину произвольного вектора через его координаты.

Обозначим через \(\alpha, \; \beta, \; \gamma \) углы между вектором \(\vec{a} \) и осями координат. Из формул проекции вектора на ось и длины вектора получаем
\(\cos \alpha = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}} \)
\(\cos \beta = \frac{Y}{\sqrt{X^2 + Y^2 + Z^2}} \)
\(\cos \gamma = \frac{Z}{\sqrt{X^2 + Y^2 + Z^2}} \)
\(\cos \alpha, \;\; \cos \beta, \;\; \cos \gamma \) называются направляющими косинусами вектора \(\vec{a} \) .

Возводя в квадрат левую и правую части каждого из предыдущих равенств и суммируя полученные результаты, имеем
\(\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \)
т.е. сумма квадратов направляющих косинусов любого вектора равна единице.

Линейные операции над векторами и их основные свойства

Линейными операциями над векторами называются операции сложения и вычитания векторов и умножения векторов на числа.

Сложение двух векторов

Пусть даны два вектора \(\vec{a} \) и \(\vec{b} \). Суммой \(\vec{a} + \vec{b} \) называется вектор, который идет из начала вектора \(\vec{a} \) в конец вектора \(\vec{b} \) при условии, что вектор \(\vec{b} \) приложен к концу вектора \(\vec{a} \) (см. рисунок).

Замечание
Действие вычитания векторов обратно действию сложения, т.е. разностью \(\vec{b} - \vec{a} \) векторов \(\vec{b} \) и \(\vec{a} \) называется вектор, который в сумме с вектором\(\vec{a} \) дает вектор \(\vec{b} \) (см. рисунок).

Замечание
Определив сумму двух векторов, можно найти сумму любого числа данных векторов. Пусть, например, даны три вектора \(\vec{a},\;\; \vec{b}, \;\; \vec{c} \). Сложив \(\vec{a} \) и \(\vec{b} \), получим вектор \(\vec{a} + \vec{b} \). Прибавив теперь к нему вектор \(\vec{c} \), получим вектор \(\vec{a} + \vec{b} + \vec{c} \)

Произведение вектора на число

Пусть даны вектор \(\vec{a} \neq \vec{0} \) и число \(\lambda \neq 0 \). Произведением \(\lambda \vec{a} \) называется вектор, который коллинеарен вектору \(\vec{a} \), имеет длину, равную \(|\lambda| |\vec{a}| \), и направление такое же, как и вектор \(\vec{a} \) , если \(\lambda > 0 \), и противоположное, если \(\lambda Геометрический смысл операции умножения вектора \(\vec{a} \neq \vec{0} \) на число \(\lambda \neq 0 \) можно выразить следующим образом: если \(|\lambda| >1 \), то при умножении вектора \(\vec{a} \) на число \(\lambda \) вектор \(\vec{a} \) «растягивается» в \(\lambda \) раз, а если \(|\lambda| 1 \).

Если \(\lambda =0 \) или \(\vec{a} = \vec{0} \), то произведение \(\lambda \vec{a} \) считаем равным нулевому вектору.

Замечание
Используя определение умножения вектора на число нетрудно доказать, что если векторы \(\vec{a} \) и \(\vec{b} \) коллинеарны и \(\vec{a} \neq \vec{0} \), то существует (и притом только одно) число \(\lambda \) такое, что \(\vec{b} = \lambda \vec{a} \)

Основные свойства линейных операций

1. Переместительное свойство сложения
\(\vec{a} + \vec{b} = \vec{b} + \vec{a} \)

2. Сочетательное свойство сложения
\((\vec{a} + \vec{b})+ \vec{c} = \vec{a} + (\vec{b}+ \vec{c}) \)

3. Сочетательное свойство умножения
\(\lambda (\mu \vec{a}) = (\lambda \mu) \vec{a} \)

4. Распределительное свойство относительно суммы чисел
\((\lambda +\mu) \vec{a} = \lambda \vec{a} + \mu \vec{a} \)

5. Распределительное свойство относительно суммы векторов
\(\lambda (\vec{a}+\vec{b}) = \lambda \vec{a} + \lambda \vec{b} \)

Замечание
Эти свойства линейных операций имеют фундаментальное значение, так как дают возможность производить над векторами обычные алгебраические действия. Например, в силу свойств 4 и 5 можно выполнять умножение скалярного многочлена на векторный многочлен «почленно».

Теоремы о проекциях векторов

Теорема
Проекция суммы двух векторов на ось равна сумме их проекций на эту ось, т.е.
\(Пр_u (\vec{a} + \vec{b}) = Пр_u \vec{a} + Пр_u \vec{b} \)

Теорему можно обобщить на случай любого числа слагаемых.

Теорема
При умножении вектора \(\vec{a} \) на число \(\lambda \) его проекция на ось также умножается на это число, т.е. \(Пр_u \lambda \vec{a} = \lambda Пр_u \vec{a} \)

Следствие
Если \(\vec{a} = (x_1;y_1;z_1) \) и \(\vec{b} = (x_2;y_2;z_2) \), то
\(\vec{a} + \vec{b} = (x_1+x_2; \; y_1+y_2; \; z_1+z_2) \)

Следствие
Если \(\vec{a} = (x;y;z) \), то \(\lambda \vec{a} = (\lambda x; \; \lambda y; \; \lambda z) \) для любого числа \(\lambda \)

Отсюда легко выводится условие коллинеарности двух векторов в координатах.
В самом деле, равенство \(\vec{b} = \lambda \vec{a} \) равносильно равенствам \(x_2 = \lambda x_1, \; y_2 = \lambda y_1, \; z_2 = \lambda z_1 \) или
\(\frac{x_2}{x_1} = \frac{y_2}{y_1} = \frac{z_2}{z_1} \) т.е. векторы \(\vec{a} \) и \(\vec{b} \) коллинеарны в том и только в том случае, когда их координаты пропорциональны.

Разложение вектора по базису

Пусть векторы \(\vec{i}, \; \vec{j}, \; \vec{k} \) - единичные векторы осей координат, т.e. \(|\vec{i}| = |\vec{j}| = |\vec{k}| = 1 \), и каждый из них одинаково направлен с соответствующей осью координат (см. рисунок). Тройка векторов \(\vec{i}, \; \vec{j}, \; \vec{k} \) называется базисом.
Имеет место следующая теорема.

Теорема
Любой вектор \(\vec{a} \) может быть единственным образом разложен по базису \(\vec{i}, \; \vec{j}, \; \vec{k}\; \), т.е. представлен в виде
\(\vec{a} = \lambda \vec{i} + \mu \vec{j} + \nu \vec{k} \)
где \(\lambda, \;\; \mu, \;\; \nu \) - некоторые числа.

Прежде всего надо разобрать само понятие вектора. Для того, чтобы ввести определение геометрического вектора вспомним, что такое отрезок . Введем следующее определение.

Определение 1

Отрезком будем называть часть прямой, которая имеет две границы в виде точек.

Отрезок может иметь 2 направления. Для обозначения направления будем называть одну из границ отрезка его началом, а другую границу - его концом. Направление указывается от его начала к концу отрезка.

Определение 2

Вектором или направленным отрезком будем называть такой отрезок, для которого известно, какая из границ отрезка считается началом, а какая его концом.

Обозначение: Двумя буквами: $\overline{AB}$ – (где $A$ его начало, а $B$ – его конец).

Одной маленькой буквой: $\overline{a}$ (рис. 1).

Введем теперь, непосредственно, понятие длин вектора.

Определение 3

Длиной вектора $\overline{a}$ будем называть длину отрезка $a$.

Обозначение: $|\overline{a}|$

Понятие длины вектора связано, к примеру, с таким понятием, как равенство двух векторов.

Определение 4

Два вектора будем называть равными, если они удовлетворяют двух условиям: 1. Они сонаправлены; 1. Их длины равны (рис. 2).

Для того, чтобы определять векторы вводят систему координат и определяют координаты для вектора во введенной системе. Как мы знаем, любой вектор можно разложить в виде $\overline{c}=m\overline{i}+n\overline{j}$, где $m$ и $n$ – действительные числа, а $\overline{i}$ и $\overline{j}$ - единичные векторы на оси $Ox$ и $Oy$, соответственно.

Определение 5

Коэффициенты разложения вектора $\overline{c}=m\overline{i}+n\overline{j}$ будем называть координатами этого вектора во введенной системе координат. Математически:

$\overline{c}={m,n}$

Как найти длину вектора?

Для того, чтобы вывести формулу для вычисления длины произвольного вектора по данным его координатам рассмотрим следующую задачу:

Пример 1

Дано: вектор $\overline{α}$, имеющий координаты ${x,y}$. Найти: длину этого вектора.

Введем на плоскости декартову систему координат $xOy$. От начал введенной системы координат отложим $\overline{OA}=\overline{a}$. Построим проекции $OA_1$ и $OA_2$ построенного вектора на оси $Ox$ и $Oy$, соответственно (рис. 3).

Построенный нами вектор $\overline{OA}$ будет радиус вектором для точки $A$, следовательно, она будет иметь координаты ${x,y}$, значит

$=x$, $[ OA_2]=y$

Теперь мы легко можем найти искомую длину с помощью теоремы Пифагора, получим

$|\overline{α}|^2=^2+^2$

$|\overline{α}|^2=x^2+y^2$

$|\overline{α}|=\sqrt{x^2+y^2}$

Ответ: $\sqrt{x^2+y^2}$.

Вывод: Чтобы найти длину вектора, у которого задан его координаты, необходимо найти корень из квадрата суммы этих координат.

Пример задач

Пример 2

Найдите расстояние между точками $X$ и $Y$, которые имеют следующие координаты: $(-1,5)$ и $(7,3)$, соответственно.

Любые две точки можно легко связать с понятием вектора. Рассмотрим, к примеру, вектор $\overline{XY}$. Как мы уже знаем, координаты такого вектора можно найти, вычтя из координат конечной точки ($Y$) соответствующие координаты начальной точки ($X$). Получим, что

Еще со школьной скамьи нам известно, что такое вектор – это отрезок, который имеет направление и характеризуется численным значением упорядоченной пары точек. Число, равняющееся длине отрезка, который служит основой, определяется как длина вектора . Для ее определения мы будем использовать систему координат . А также учитываем еще одну характеристику – направление отрезка . Для того, чтобы найти длину вектора, можно воспользоваться двумя способами. Самый простой – берем линейку и измеряем, какова же она будет. А можно воспользоваться формулой. Этот вариант мы сейчас и рассмотрим.

Необходимо:

— система координат (х, у);
— вектор;
— знания по алгебре и геометрии.

Инструкция:

  • Формулу определения длины направленного отрезка запишем следующим образом r²= x²+y² . Извлекаем корень квадратный из и полученное число будет результатом. Чтобы найти длину вектора, совершаем следующие действия. Обозначаем начальную точку координат (х1;у1) , конечная точка (х2;у2) . Находим x и y путем разности координат конца и начала направленного отрезка. Проще говоря, число (х) определяем по следующей формуле х=х2-х1 , а число (у) соответственно у=у2-у1 .
  • Находим квадрат суммы координат по формуле x²+y² . Извлекаем корень квадратный из полученного числа, который и будет длиной вектора (r) . Решение поставленной задачи упростится, если сразу будут известны начальные данные координат направленного отрезка. Все, что потребуется – это подставить данные в формулу.
  • Внимание! Вектор может находиться не на плоскости координат, а в пространстве, в таком случае к формуле прибавится еще одно значение, и она будет иметь следующий вид: r²= x²+y²+ z² , где – (z) дополнительная ось, помогающая определить величину направленного отрезка в пространстве.

Oxy

О А ОА .

, откуда ОА .

Таким образом, .

Рассмотрим пример.

Пример.

Решение.

:

Ответ:

Oxyz в пространстве.

А ОА будет диагональю.

В этом случае (так как ОА ОА .

Таким образом, длина вектора .

Пример.

Вычислите длину вектора

Решение.

, следовательно,

Ответ:

Прямая на плоскости

Общее уравнение

Ax + By + C ( > 0).

Вектор = (А; В) - нормальный вектор прямой.

В векторном виде: + С = 0 , где - радиус-вектор произвольной точки на прямой (рис. 4.11).

Частные случаи:



1) By + C = 0 - прямая параллельна оси Ox ;

2) Ax + C = 0 - прямая параллельна оси Oy ;

3) Ax + By = 0 - прямая проходит через начало координат;

4) y = 0 - ось Ox ;

5) x = 0 - ось Oy .

Уравнение прямой в отрезках

где a, b - величины отрезков, отсекаемых прямой на осях координат.

Нормальное уравнение прямой (рис. 4.11)

где - угол, образуемый нормально к прямой и осью Ox ; p - расстояние от начала координат до прямой.

Приведение общего уравнения прямой к нормальному виду:

Здесь - нормируемый множитель прямой; знак выбирается противоположным знаку C , если и произвольно, если C = 0 .

Нахождение длины вектора по координатам.

Длину вектора будем обозначать . Из-за такого обозначения длину вектора часто называют модулем вектора.

Начнем с нахождения длины вектора на плоскости по координатам.

Введем на плоскости прямоугольную декартову систему координат Oxy . Пусть в ней задан вектор и он имеет координаты . Получим формулу, позволяющую находить длину вектора через координаты и .

Отложим от начала координат (от точки О ) вектор . Обозначим проекции точки А на координатные оси как и соответственно и рассмотрим прямоугольник с диагональю ОА .

В силу теоремы Пифагора справедливо равенство , откуда . Из определения координат вектора в прямоугольной системе координатмы можем утверждать, что и , а по построению длина ОА равна длине вектора , следовательно, .

Таким образом, формула для нахождения длины вектора по его координатам на плоскости имеет вид .

Если вектор представлен в виде разложения по координатным векторам , то его длина вычисляется по этой же формуле , так как в этом случае коэффициенты и являются координатами вектора в заданной системе координат.

Рассмотрим пример.

Пример.

Найдите длину вектора , заданного в декартовой системе координат.

Решение.

Сразу применяем формулу для нахождения длины вектора по координатам :



Ответ:

Теперь получим формулу для нахождения длины вектора по его координатам в прямоугольной системе координат Oxyz в пространстве.

Отложим от начала координат вектор и обозначим проекции точки А на координатные оси как и . Тогда мы можем построить на сторонах и прямоугольный параллелепипед, в котором ОА будет диагональю.

В этом случае (так как ОА – диагональ прямоугольного параллелепипеда), откуда . Определение координат вектора позволяет нам записать равенства , а длина ОА равна искомой длине вектора, следовательно, .

Таким образом, длина вектора в пространстве равна корню квадратному из суммы квадратов его координат , то есть, находится по формуле .

Пример.

Вычислите длину вектора , где - орты прямоугольной системы координат.

Решение.

Нам дано разложение вектора по координатным векторам вида , следовательно, . Тогда по формуле нахождения длины вектора по координатам имеем .

Прежде всего надо разобрать само понятие вектора. Для того, чтобы ввести определение геометрического вектора вспомним, что такое отрезок . Введем следующее определение.

Определение 1

Отрезком будем называть часть прямой, которая имеет две границы в виде точек.

Отрезок может иметь 2 направления. Для обозначения направления будем называть одну из границ отрезка его началом, а другую границу - его концом. Направление указывается от его начала к концу отрезка.

Определение 2

Вектором или направленным отрезком будем называть такой отрезок, для которого известно, какая из границ отрезка считается началом, а какая его концом.

Обозначение: Двумя буквами: $\overline{AB}$ – (где $A$ его начало, а $B$ – его конец).

Одной маленькой буквой: $\overline{a}$ (рис. 1).

Введем теперь, непосредственно, понятие длин вектора.

Определение 3

Длиной вектора $\overline{a}$ будем называть длину отрезка $a$.

Обозначение: $|\overline{a}|$

Понятие длины вектора связано, к примеру, с таким понятием, как равенство двух векторов.

Определение 4

Два вектора будем называть равными, если они удовлетворяют двух условиям: 1. Они сонаправлены; 1. Их длины равны (рис. 2).

Для того, чтобы определять векторы вводят систему координат и определяют координаты для вектора во введенной системе. Как мы знаем, любой вектор можно разложить в виде $\overline{c}=m\overline{i}+n\overline{j}$, где $m$ и $n$ – действительные числа, а $\overline{i}$ и $\overline{j}$ - единичные векторы на оси $Ox$ и $Oy$, соответственно.

Определение 5

Коэффициенты разложения вектора $\overline{c}=m\overline{i}+n\overline{j}$ будем называть координатами этого вектора во введенной системе координат. Математически:

$\overline{c}={m,n}$

Как найти длину вектора?

Для того, чтобы вывести формулу для вычисления длины произвольного вектора по данным его координатам рассмотрим следующую задачу:

Пример 1

Дано: вектор $\overline{α}$, имеющий координаты ${x,y}$. Найти: длину этого вектора.

Введем на плоскости декартову систему координат $xOy$. От начал введенной системы координат отложим $\overline{OA}=\overline{a}$. Построим проекции $OA_1$ и $OA_2$ построенного вектора на оси $Ox$ и $Oy$, соответственно (рис. 3).

Построенный нами вектор $\overline{OA}$ будет радиус вектором для точки $A$, следовательно, она будет иметь координаты ${x,y}$, значит

$=x$, $[ OA_2]=y$

Теперь мы легко можем найти искомую длину с помощью теоремы Пифагора, получим

$|\overline{α}|^2=^2+^2$

$|\overline{α}|^2=x^2+y^2$

$|\overline{α}|=\sqrt{x^2+y^2}$

Ответ: $\sqrt{x^2+y^2}$.

Вывод: Чтобы найти длину вектора, у которого задан его координаты, необходимо найти корень из квадрата суммы этих координат.

Пример задач

Пример 2

Найдите расстояние между точками $X$ и $Y$, которые имеют следующие координаты: $(-1,5)$ и $(7,3)$, соответственно.

Любые две точки можно легко связать с понятием вектора. Рассмотрим, к примеру, вектор $\overline{XY}$. Как мы уже знаем, координаты такого вектора можно найти, вычтя из координат конечной точки ($Y$) соответствующие координаты начальной точки ($X$). Получим, что