Химические негативные факторы, их воздействие на организм человека. Влияние вредных факторов химического происхождения на здоровье человека Химические факторы воздействующие на человека

Состояние, при котором скорости прямой и обратной реакций равны между собой, называется химическим равновесием. Уравнение обратимой реакции в общем виде:

Скорость прямой реакции v 1 =k 1 [A] m [B] n , скорость обратной реакции v 2 =k 2 [С] p [D] q , где в квадратных скобках – равновесные концентрации. По определению, при химическом равновесии v 1 =v 2, откуда

К с =k 1 /k 2 = [С] p [D] q / [A] m [B] n ,

где К с – константа химического равновесия, выраженная через молярные концентрации. Приведенное математическое выражение нередко называют законом действия масс для обратимой химической реакции: отношение произведения равновесных концентраций продуктов реакции к произведению равновесных концентраций исходных веществ.

Положение химического равновесия зависит от следующих параметров реакции: температуры, давления и концентрации. Влияние, которое оказывают эти факторы на химическую реакцию, подчиняются закономерности, которая была высказана в общем виде в 1884 году французским ученым Ле-Шателье. Современная формулировка принципа Ле-Шателье такова:

Если на систему, находящуюся в состоянии равновесия, оказать внешнее воздействие, то система перейдет в другое состояние так, чтобы уменьшить эффект внешнего воздействия.

Факторы, влияющие на химическое равновесие.

1. Влияние температуры. В каждой обратимой реакции одно из направлений отвечает экзотермическому процессу, а другое - эндотермическому.

При повышении температуры химическое равновесие смещается в направлении эндотермической реакции, при понижении температуры - в направлении экзотермической реакции.

2. Влияние давления. Во всех реакциях с участием газообразных веществ, сопровождающихся изменением объема за счет изменения количества вещества при переходе от исходных веществ к продуктам, на положение равновесия влияет давление в системе.
Влияние давления на положение равновесия подчиняется следующим правилам:

При повышении давления равновесие сдвигается в направлении образования веществ (исходных или продуктов) с меньшим объемом.

3. Влияние концентрации. Влияние концентрации на состояние равновесия подчиняется следующим правилам:

При повышении концентрации одного из исходных веществ равновесие сдвигается в направлении образования продуктов реакции;
при повышении концентрации одного из продуктов реакции равновесие сдвигается в направлении образования исходных веществ.

Вопросы для самоконтроля:



1. Что такое скорость химической реакции и от каких факторов она зависит? От каких факторов зависит константа скорости?

2. Составить уравнение скорости реакции образования воды из водорода и кислорода и показать, как измениться скорость, если концентрацию водорода увеличить в три раза.

3. Как изменяется скорость реакции с течением времени? Какие реакции называются обратимыми? Чем характеризуется состояние химического равновесия? Что называется константой равновесия, от каких факторов она зависит?

4. Какими внешними воздействиями можно нарушить химическое равновесие? В каком направлении смешается равновесие при изменении температуры? Давления?

5. Каким образом можно сместить обратимую реакцию в определенном направлении и довести до конца?

Лекция № 12 (проблемная)

Растворы

Цель: Дать качественные заключения о растворимости веществ и количественную оценку растворимости.

Ключевые слова: Растворы – гомогенные и гетерогенные;истинные и коллоидные; растворимость веществ; концентрация растворов; растворы неэлектроилов; законы Рауля и вант-Гоффа.

План.

1. Классификация растворов.

2. Концентрация растворов.

3. Растворы неэлектролитов. Законы Рауля.



Классификация растворов

Растворы – это гомогенные (однофазные) системы переменного состава, состоящие из двух или более веществ (компонентов).

По характеру агрегатного состояния растворы могут быть газообразными, жидкими и твердыми. Обычно компонент, который в данных условиях находится в том же агрегатном состоянии, что и образующийся раствор, считают растворителем, остальные составляющие раствора – растворенными веществами. В случае одинакового агрегатного состояния компонентов растворителем считают тот компонент, который преобладает в растворе.

В зависимости от размеров частиц растворы делятся на истинные и коллоидные. В истинных растворах (часто называемых просто растворами) растворенное вещество диспергировано до атомного или молекулярного уровня, частицы растворенного вещества не видимы ни визуально, ни под микроскопом, свободно передвигаются в среде растворителя. Истинные растворы – термодинамически устойчивые системы, неограниченно стабильные во времени.

Движущими силами образования растворов являются энтропийный и энтальпийный факторы. При растворении газов в жидкости энтропия всегда уменьшается ΔS < 0, а при растворении кристаллов возрастает (ΔS > 0). Чем сильнее взаимодействие растворенного вещества и растворителя, тем больше роль энтальпийного фактора в образовании растворов. Знак изменения энтальпии растворения определяется знаком суммы всех тепловых эффектов процессов, сопровождающих растворение, из которых основной вклад вносят разрушение кристаллической решетки на свободные ионы (ΔH > 0) и взаимодействие образовавшихся ионов с молекулами растворителя (сольтивация, ΔH < 0). При этом независимо от знака энтальпии при растворении (абсолютно нерастворимых веществ нет) всегда ΔG = ΔH – T·ΔS < 0, т. к. переход вещества в раствор сопровождается значительным возрастанием энтропии вследствие стремления системы к разупорядочиванию. Для жидких растворов (расплавов) процесс растворения идет самопроизвольно (ΔG < 0) до установления динамического равновесия между раствором и твердой фазой.

Концентрация насыщенного раствора определяется растворимостью вещества при данной температуре. Растворы с меньшей концентрацией называются ненасыщенными.

Растворимость для различных веществ колеблется в значительных пределах и зависит от их природы, взаимодействия частиц растворенного вещества между собой и с молекулами растворителя, а также от внешних условий (давления, температуры и т. д.)

В химической практике наиболее важны растворы, приготовленные на основе жидкого растворителя. Именно жидкие смеси в химии называют просто растворами. Наиболее широко применяемым неорганическим растворителем является вода. Растворы с другими растворителями называются неводными.

Растворы имеют чрезвычайно большое практическое значение, в них протекают многие химические реакции, в том числе и лежащие в основе обмена веществ в живых организмах.

Концентрация растворов

Важной характеристикой растворов служит их концентрация, которая выражает относительное количество компонентов в растворе. Различают массовые и объемные концентрации, размерные и безразмерные.

К безразмерным концентрациям (долям) относятся следующие концентрации:

Массовая доля растворенного вещества W (B) выражается в долях единицы или в процентах:

где m(B) и m(A) – масса растворенного вещества B и масса растворителя A.

Объемная доля растворенного вещества σ(B) выражается в долях единицы или объемных процентах:

где V i – объем компонента раствора, V(B) – объем растворенного вещества B. Объемные проценты называют градусами *) .

*) Иногда объемная концентрация выражается в тысячных долях (промилле, ‰) или в миллионных долях (млн –1), ppm.

Мольная доля растворенного вещества χ(B) выражается соотношением

Сумма мольных долей k компонентов раствора χ i равна единице

К размерным концентрациям относятся следующие концентрации:

Моляльность растворенного вещества C m (B) определяется количеством вещества n(B) в 1 кг (1000 г) растворителя, размерность моль/кг.

Молярная концентрация вещества B в растворе C (B) – содержание количества растворенного вещества B в единице объема раствора, моль/м 3 , или чаще моль/литр:

где μ(B) – молярная масса B, V – объем раствора.

Молярная концентрация эквивалентов вещества B C Э (B) (нормальность – устаревш.) определяется числом эквивалентов растворенного вещества в единице объема раствора, моль/литр:

где n Э (B) – количество вещества эквивалентов, μ Э – молярная масса эквивалента.

Титр раствора вещества B(T B) определяется массой растворенного вещества в г, содержащегося в 1 мл раствора:

Г/мл или г/мл.

Массовые концентрации (массовая доля, процентная, моляльная) не зависят от температуры; объемные концентрации относятся к определенной температуре.

Все вещества в той или иной степени способны растворяться и характеризуются растворимостью. Некоторые вещества неограниченно растворимы друг в друге (вода-ацетон, бензол-толуол, жидкие натрий-калий). Большинство соединений ограниченно растворимы (вода-бензол, вода-бутиловый спирт, вода-поваренная соль), а многие малорастворимы или практически нерастворимы (вода-BaSO 4 , вода-бензин).

Растворимостью вещества при данных условиях называют его концентрацию в насыщенном растворе. В таком растворе достигается равновесие между растворяемым веществом и раствором. В отсутствие равновесия раствор остается стабильным, если концентрация растворенного вещества меньше его растворимости (ненасыщенный раствор), или нестабильным, если в растворе содержится вещества больше его растворимости (пересыщенный раствор).

На состояние химического равновесия оказывают влияние концентрации реагирующих веществ, температура , а для газообразных веществ и давление.

При изменении одного из этих параметров равновесие нарушается, т. е. скорость прямой и обратной реакций перестают быть равными. На какое-то время скорость одной из реакций становится больше, чем скорость ей обратной реакции; соответственно меняются и концентрации всех реагирующих веществ. Однако взаимное изменение концентраций, как уже показано выше, снова выравнивает скорости прямой и обратной реакций. Таким образом, спустя некоторое время наступит новое состояние равновесия, которому будут соответствовать новые значения равновесных концентраций. Такой переход равновесной системы от одного состояния равновесия к другому называется смещением (или сдвигом) химического равновесия .

Направление смещения химического равновесия при изменениях концентрации реагирующих веществ, температуры и давления (в случае газовых реакций) определяется общим правилом, которое получило название принципа Ле Шателье: если на систему, находящуюся в равновесии, производится какое-либо внешнее воздействие, то в ней ускоряется та из двух противоположных реакций, которая ослабляет это воздействие .

Поясним принцип Ле Шателье на примере синтеза аммиака:

$$\rm 3H_2 + N_2 \rightleftarrows 2NH_3 + 92,4\text{кДж}$$

Если внешнее воздействие выражается в увеличении концентрации исходных веществ (азота или водорода), то в соответствии с законом действующих масс возрастет скорость прямой реакции и равновесие сместится вправо , в сторону образования аммиака. К тому же результату приведет уменьшение концентрации продукта реакции , так как вызовет уменьшение скорости обратной реакции. Этот прием часто используют для сдвига равновесия в сторону продукта, например, в реакции получения сложного эфира можно добиться большего выхода продукта, отгоняя более летучий эфир или вводя концентрированную серную кислоту, поглощающую образующуюся воду (т. е. снижая концентрацию одного из продуктов):

$$\rm R_1COOH + R_2OH \rightleftarrows R_1COOR_2 + H_2O$$

Напротив, снижение концентрации исходных веществ или увеличение концентрации (накопление) продуктов вызывает преобладание скорости обратной реакции, что приводит к уменьшению концентрации продуктов в равновесной смеси, или, как говорят, к смещению равновесия влево , в сторону исходных веществ.

Увеличение температуры связано с подводом к системе дополнительной тепловой энергии. Стремясь удержать равновесие, система будет воспринимать дополнительное тепло, ускоряя ту из взаимно противоположных реакций, которая идет с поглощением тепла . Если прямая реакция идет с выделением тепла, то обратная требует его затрат, значит, увеличение температуры при синтезе аммиака сдвинет равновесие в сторону эндотермической реакции, т.е. влево, в сторону исходных веществ (водорода и азота). Наоборот, снижение температуры заставит обратимую систему ускорить ту реакцию , которая, выделяя тепло , компенсирует снижение температуры (т. е. экзотермическую реакцию), и в равновесной смеси станет больше аммиака.

Изменение давления равновесной системы связано с изменением объема системы и, следовательно, количества молекул, находящихся в этом объёме, т. е. концентраций всех веществ. При этом изменится скорость как прямой, так и обратной реакции. Увеличение давления благоприятствует протеканию той реакции, которая приводит к уменьшению общего числа молей газообразных веществ . В нашем примере в левой части уравнения 3 + 1 = 4 моль, а в правой части 2 моль, значит, равновесие сместится вправо, в сторону образования продукта.

Необходимо подчеркнуть, что изменение давления смещает равновесие только в реакциях, протекающих в газовой фазе (или с участием газов), и только в той мере, в какой его влияние проявляется через концентрации газообразных веществ. Например, на смещение равновесия в обратимой системе $$\rm Fe_3O_{4\: \text{тв}} + CO_{\text{г}} \rightleftarrows 3FeO_{\text{тв}} + CO_{2\: \text{г}}$$ давление не влияет, поскольку учитываются только количества газообразных веществ - C O \rm CO и $$\rm CO_2$$, а они равны.

Катализаторы, изменяя энергии активации двух взаимно противоположных реакций, одинаково ускоряют как прямую, так и обратную реакции, и не влияют на смещение равновесия .

В какую сторону сместится равновесие обратимой реакции $$\rm N_2 + O_2 \rightleftarrows 2NO$$; Δ H > 0 \Delta H > 0: а) при понижении температуры; б) при повышении давления?

а) Понижение температуры вызовет необходимость подвода дополнительного тепла, т.е. сместит равновесие в сторону экзотермической реакции. Если прямая реакция протекает с поглощением тепла (Δ H > 0 \Delta H > 0) значит, обратная протекает с выделением тепла (Δ H < 0 \Delta H < 0). Равновесие сместится влево.

б) Повышение давления смещает равновесие в ту сторону, где меньшее суммарное количество веществ. Однако и в левой, и в правой частях уравнения реакции насчитывается по 2 моль веществ, значит, изменение давления не влияет на сдвиг равновесия.

Как надо изменить концентрацию, давление и температуру гомогенной системы $$\rm PCl_5 \rightleftarrows PCl_3 + Cl_2$$; Δ H > 0 \Delta H > 0 , чтобы сместить равновесие в сторону разложения пентахлорида фосфора?

Смещения равновесия вправо можно добиться, увеличивая концентрацию исходного вещества ($$\rm PCl_5$$), уменьшая концентрации продуктов ($$\rm PCl_3$$ и $$\rm Cl_2$$), снижая давление (в левой части уравнения меньшее количество веществ, чем в правой) или увеличивая температуру (при этом ускоряется скорость эндотермической реакции, для которой Δ H > 0 \Delta H > 0).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Анализ поводов приобщения к алкогольным напиткам. Характеристика влияния алкоголя на нервную систему (ухудшение условно-рефлекторной деятельности, изменение соотношения процессов возбуждения и торможения ЦНС). Влияние алкоголя на желудочно-кишечный тракт.

    презентация , добавлен 09.06.2010

    Изучение влияния алкоголя на нервную, репродуктивную и сердечно-сосудистую системы, пищеварительный тракт и печень. Воздействие алкоголя на психическую и мыслительную мозговую деятельность. Влияние крепких спиртных напитков на прогресс алкоголизма.

    реферат , добавлен 20.04.2015

    Головной мозг как главный регулятор всех жизненных функций организма. Строение сердца человека. Роль и значение печени и почек в жизнедеятельности организма человека. Влияние табачного дыма на легкие. Воздействие наркотиков на центральную нервную систему.

    презентация , добавлен 19.02.2016

    Воздействие алкоголя на желудок и поджелудочную железу, сосудистую и нервную систему, мозг. Печень в условиях алкогольной интоксикации. Общая математическая модель старения Б. Гомперца. Построение модели влияния алкоголя на механизм старения человека.

    курсовая работа , добавлен 02.04.2012

    Космическая погода в экологии человека. Физиология сердечно-сосудистой и нервной системы человека. Магнитные поля, понижение и повышение температуры, перепады атмосферного давления, их влияние на сердечно-сосудистую и центральную нервную систему человека.

    курсовая работа , добавлен 19.12.2011

    Изучение влияния наркотиков на психическое, физическое здоровье человека. Уголовная ответственность за распространение наркотических средств и кокаина. Воздействие их на дыхательный центр и хеморецепторы, ухудшение функций сердечно-сосудистой системы.

    презентация , добавлен 02.06.2015

    Желудочно-кишечный тракт как система органов у человека, предназначенная для переработки и извлечения из пищи питательных веществ, всасывания их в кровь и выделения из организма непереваренных остатков. Функции и строение печени, поджелудочной железы.

    презентация , добавлен 11.02.2016

    Общее действие табачного дыма. Влияния курения на нервную систему, на органы дыхания, на сердечно-сосудистую систему, на органы пищеваения, на половую функцию. Курениие и здоровье подростка. Вред курения для здоровья женщин и потомства.

    Понятие «химический фактор»

    Химический фактор – химические вещества и смеси, в т.ч. некоторые вещества биологической природы (антибиотики, витамины, гормоны, ферменты…), получаемые химическим синтезом и /или для контроля которых используют методы химического анализа.

    Вредными являются вещества, которые при контакте с организмом человека в случае нарушения требований безопасности могут вызвать производственные травмы, профессиональные заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами как в процессе работы, так и в отдаленные сроки жизни настоящего и последующего поколений.

    К профессиональным заболеваниям, обусловленным воздействием химического фактора, относятся:

    Острые и хронические интоксикации и их последствия, протекающие с изолированным или сочетанным поражением различных органов и систем;

    Болезни кожи (эпидермоз, контактный дерматит, фотодерматит, онихии и паронихии, токсическая меланодермия, масляные фолликулиты);

    Металлическая лихорадка, фторопластовая (тефлоновая) лихорадка и т.д.

    Вредное воздействие факторов на здоровье работника присутствует :

    • в воздухе кабин автомобилей определяется содержание оксида углерода и оксида азота (в пересчёте на NO2) (отбор воздуха производится в движении при закрытых окнах);
    • на рабочем месте монтеров пути при подбивке пути на щебеночном балласте и при работе около путеремонтных машин в воздухе определяют кремний диоксид кристаллический при содержании в пыли от 10 до 70%, на балласте с асбестом – пыль асбестового балласта; при выгрузке и укладке новых шпал пропитанных антисептиком – фенол, нафталин и канцерогены (антрацен, бенза(а)пирен);
    • на рабочем месте машиниста стационарной компрессорной установки оцениваются масла минеральные нефтяные, оксид углерода, оксиды азота (в пересчёте на NO2), углеводороды алифатические предельные, акролеин;
    • на рабочем месте сливщиков-разливщиков нефтепродуктов оцениваются углеводороды алифатические предельные;
    • на рабочем месте лаборанта химического анализа – щелочи едкие, кислоты, при использовании хромпика – неорганические соединения хрома;
    • на рабочем месте маляра и работников других профессий, использующих лакокрасочные материалы , оцениваются в воздухе рабочей зоны высокотоксичные и легколетучие компоненты лакокрасочных материалов (растворители, разбавители, отвердители, ускорители, тяжелые металлы (пигменты), пластификаторы, и др.), соотношения которых значительно варьируют в зависимости от марки применяемого материала. Для уточнения списка веществ целесообразно использовать «Межотраслевые правила по охране труда при окрасочных работах ПОТ Р М-017-2001», в приложении к которым приводятся перечни этих веществ по основным лакокрасочным материалам;
    • на рабочем месте аккумуляторщика определяются пары серной кислоты или щелочи едкой в зависимости от того, с какими растворами имеет дело рабочий;
    • на рабочем месте электросварщика при использовании электродов ОЗС: диЖелезо триоксид, марганец в сварочных аэрозолях, углерода оксид, азота оксиды (полный список веществ зависит от типа электродов, состава стальной основы, обмазки, флюса и т.д., в ряде случаев могут определяться фтористый водород, молибден, торий, бериллий, перечень определяемых веществ см. «Методические указания по определению вредных веществ в сварочном аэрозоле» № 4945-88 от 22.12.1988 г.);
    • на рабочем месте заточника при заточке деталей с использованием «белых кругов» определяется корунд белый, с использованием «серых кругов» – электрокорунд;
    • на рабочих местах профессий, выполняющих работы на деревообрабатывающих станках , определяется «пыль растительного и животного происхождения: древесная и др. (с примесью диоксида кремния менее 2 %)»;

    Классификация вредных веществ

    Вредные вещества классифицируются как по степени воздействия, так и по характеру оказываемого воздействия на организм человека (см. рис. 1).

    Рисунок 1 – классификация фактора

    В соответствии с ГОСТ 12.1.007-76 ССБТ «Вредные вещества. Классификация и общие требования безопасности» в зависимости от степени воздействия на организм человека химические вещества классифицируются на:

    Вещества чрезвычайно опасные – 1 класс (3,4-бенз(а)пирен, тетраэтилсвинец, ртуть, озон, фосген и др.);

    Вещества высокоопасные – 2 класс (бензол, сероводород, оксиды азота, марганец, медь, хлор и др.);

    Вещества умеренно опасные – 3 класс (нефть, метанол, ацетон, сернистый ангидрид);

    Вещества малоопасные – 4 класс (бензин, керосин, метан, этанол и др.).

    Классификация химических веществ в зависимости от степени воздействия на организм человека приведена на рисунке 2.

    Рисунок 2 – Классификация химического фактора в зависимости от степени воздействия

    В соответствии с ГОСТ 12.0.003-74 ССБТ «Опасные и вредные производственные факторы. Классификация» по характеру воздействия на организм человека вредные химические вещества подразделяются на следующие группы:

    Общетоксические . К их числу относятся ароматические углеводороды и их производные, ртуть и фосфорорганические соединения, метиловый спирт и т.д.;

    Раздражающие. Вызывают воспаление верхних дыхательных путей (сероводород, хлор, аммиак). Сильные кислоты и щелочи, многие ангидриды кислот оказывают местное действие на кожу, вызывая ее омертвление.;

    Сенсибилизирующие. Вызывают повышенную чувствительность (аллергические реакции) организма человека. К веществам, вызывающим сенсибилизацию, относятся формальдегид, ароматические нитро-, нитрозо-, аминосоединения, карбонилы никеля, железа, кобальта, некоторые антибиотики, например, эритромицин и др.;

    Влияющие на репродуктивную функцию. К таким веществам относят бензол и его производные, сероуглерод, соединения ртути, радиоактивные вещества и др.;

    Канцерогенные. Попадая в организм человека, вызывают образование, как правило, злокачественных или доброкачественных опухолей (асбесты, бензол, бенз(а)пирен, бериллий и его соединения, каменноугольные и нефтяные смолы, сажи бытовые, этилена оксид и др.);

    Мутагенные. Вызывают изменение генетического кода клеток, наследственной информации. Это может вызвать снижение иммунитета организма, раннее старение, развитие заболеваний (формальдегид, этилена оксид, радиоактивные и наркотические вещества);

    Фиброгенное действие. Такое действие, при котором в легких человека происходит разрастание соединительной ткани, нарушающее нормальное строение и функции органа. Очень высокой фиброгенной активностью обладает диоксид кремния или кремнезем

    Присутствующие в воздухе рабочей зоны химические вещества, могут оказывать на организм человека КОМБИНИРОВАННОЕ ВОЗДЕЙСТВИЕ следующего характера:

    Аддитивное действие (эффект суммации) : суммарный эффект смеси равен сумме эффектов действующих компонентов. Аддитивность характерна для веществ однонаправленного действия, когда компоненты смеси оказывают влияние на одни и те же системы организма, причем при количественно одинаковой замене компонентов друг другом токсичность смеси не меняется;

    Потенцированное действие (синергизм) : оказывает большее усиление эффекта, чем аддитивное (от англ. роtent; - сильнодействующий). Компоненты смеси действуют так, что одно вещество усиливает действие другого. Примером синергизма является действие сероводорода в смеси с углеводородами (характерный состав сероводородсодержащего природного газа,при совместном действии сернистого ангидрида и хлора, оксидов углерода и азота (продукты сгорания топлива). Алкоголь усиливает токсическое действие анилина, ртути и других веществ;

    Антагонистическое действие эффект комбинированного действия меньше ожидаемого. Компоненты смеси действуют так, что одно вещество ослабляет действие другого, эффект - меньше аддитивного. Примером может служить антидотное (обезвреживающее) взаимодействие между эзерином и атропином;

    Независимое действие - компоненты смеси действуют на разные системы, токсические эффекты не связаны друг с другом. Преобладает эффект наиболее токсичного вещества. Комбинации веществ с независимым действием встречаются достаточно часто, например, бензол и раздражающие газы, смесь продуктов сгорания и пыли.

    Измеряемые и нормируемые показатели

    • Предельно допустимая концентрация (ПДК) - концентрация вредного вещества, которая при ежедневной (кроме выходных дней) работе в течение 8 ч и не более 40 ч в неделю, в течение всего рабочего стажа не должна вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующего поколений. Воздействие вредного вещества на уровне ПДК не исключает нарушение состояния здоровья у лиц с повышенной чувствительностью. ПДК устанавливаются в виде максимально разовых и среднесменных нормативов.
    • Максимальная (разовая) концентрация ПДК МР , - наиболее высокая из числа 30-минутных концентраций, зарегистрированных в данной точке за определенный период наблюдения.
    • Среднесменная концентрация ПДК СС – средняя из числа концентраций, выявленных в течение смены или отбираемая непрерывно в течение 24 ч.

    Основными нормативными документами, содержащими гигиенические нормативы для химических веществ являются:

    • ГОСТ 12.1.005-88 ССБТ «Общие санитарно-гигиенические требования к воздуху рабочей зоны»
    • ГН 2.2.5.1313-03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны»
    • ГН 2.2.5.2308-07 «Ориентировочные безопасные уровни воздействия (ОБУВ) вредных веществ в воздухе рабочей зоны»
    Выбор норматива

    Гигиенические критерии и классификация условий труда при оценке воздействия химического фактора разработаны в соответствии с классификацией химических веществ в зависимости от классов опасности, и по особенности действия на организм

    В соответствии с Р 2.2.2006-05 «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда»

    Классы условий труда в зависимости от содержания в воздухе рабочей зоны вредных веществ (првышение ПДК, раз)

    Таблица 1

    Вредные вещества Вредный класс 3.1 Вредный класс 3.2 Вредный класс 3.3 Вредный класс 3.4 Опасный класс
    Вредные вещества 1 – 4 классов опасности за исключением перечисленных ниже < ПДК макс 1,1 –3,0 3,1 – 10,0 10,1 – 15,0 15,1 – 20,0 >20,0
    * < ПДК сс 1,1 – 3,0 3,1 – 10,0 10,1 – 15,0 >15,0
    Особенности действия на организмe
    Вещества опасные для развития острого отравления
    с остронаправленным механизмом действия, хлор, аммиак < ПДК макс 1,1 – 2,0 2,1 – 4,0 4,1 – 6,0 6,1 – 10,0 >10,0
    раздражающего действия < ПДК макс 1,1 – 2,0 2,1 – 5,0 5,1 – 10,0 10,1 – 50,0 >50,0
    канцерогены; вещества опасные для репродуктивного здоровья человека < ПДК сс 1,1 – 2,0 2,1 – 4,0 4,1 – 10,0 >10,1
    аллергены
    высоко опасные < ПДК макс 1,1 – 3,0 3,1 – 15,0 15,1 – 20,0 >20,0
    умеренно опасные < ПДК макс 1,1 – 2,0 2,1 – 5,0 5,1 – 15,0 15,1 – 20,0 >20,0
    противоопухолевые лекарственные средства, гормоны (эстрогены) +
    наркотические анальгетики +
    Общая оценка по химическому фактору

    Степень вредности условий труда с веществами, имеющими одну нормативную величину, устанавливают при сравнении фактических концентраций с соответствующей ПДК – максимальной (ПДК) или среднесменной (ПДК). Наличие двух величин ПДК требует оценки условий труда как по максимальным, так и по среднесменным концентрациям, при этом в итоге класс условий труда устанавливают по более высокой степени вредности.

    Для веществ, опасных для развития острого отравления, и аллергенов определяющим является сравнение фактических концентраций с ПДК, а канцерогенов – с ПДК. В тех случаях, когда указанные вещества имеют два норматива, воздух рабочей зоны оценивают как по среднесменным, так и по максимальным концентрациям. Дополнением для сравнения полученных результатов служат значения строки «Вредные вещества 1 – 4 классов опасности» (табл. 1).

    Для веществ, способных вызывать преимущественно хронические интоксикации, устанавливаются среднесменные ПДК, для веществ с остронаправленным токсическим эффектом устанавливаются максимальные разовые концентрации; для веществ, при воздействии которых возможно развитие как хронических, так и острых интоксикаций, устанавливаются наряду с максимально разовыми и среднесменные ПДК.

    При одновременном присутствии в воздухе рабочей зоны нескольких вредных веществ однонаправленного действия с эффектом суммации исходят из расчета суммы отношений фактических концентраций каждого из них к их ПДК. Полученная величина не должна превышать единицу (допустимый предел для комбинации), что соответствует допустимым условиям труда. Если полученный результат больше единицы, то класс вредности условий труда устанавливают по кратности превышения единицы по той строке табл.1, которая соответствует характеру биологического действия веществ, составляющих комбинацию, либо по первой строке этой же таблицы.

    При одновременном содержании в воздухе рабочей зоны двух и более вредных веществ разнонаправленного действия класс условий труда для химического фактора устанавливают следующим образом:

    – по веществу, концентрация которого соответствует наиболее высокому классу и степени вредности;

    – присутствие любого числа веществ, уровни которых соответствуют классу 3.1, не увеличивает степень вредности условий труда;

    – три и более веществ с уровнями класса 3.2 переводят условия труда в следующую степень вредности – 3.3;

    – два и более вредных веществ с уровнями класса 3.3 переводят условия труда в класс 3.4. Аналогичным образом осуществляется перевод из класса 3.4 в 4 класс – опасные условия труда.

    Если одно вещество имеет несколько специфических эффектов (канцероген, аллерген и др.), оценка условий труда проводится по более высокой степени вредности.

    При работе с веществами, проникающими через кожные покровы и имеющими соответствующий норматив – ПДУ (согласно ГН 2.2.5.563-96 «Предельно допустимые уровни (ПДУ) загрязнения кожных покровов вредными веществами»), класс условий труда устанавливают в соответствии с табл. 1 по строке – «Вредные вещества 1 – 4 классов опасности».

    Химические вещества, имеющие в качестве норматива ОБУВ (согласно ГН 2.2.5.1314-03 «Ориентировочные безопасные уровни воздействия (ОБУВ) вредных веществ в воздухе рабочей зоны»), оценивают согласно табл.1 по строке – «Вредные вещества 1 – 4 классов опасности».

    Средства измерений

    Основные виды отбора проб при измерении химического фактора представлены на рисунке 3.

    Рисунок 3 – Виды отбора проб

    К средствам измерений относятся различного вида аспираторы, газоанализаторы, газовые хроматоргафы, индикаторные трубки.

    Рисунок 4. – Виды аспираторов.

    Рисунок 5 – Газовый хроматограф.

    Рисунок 6 – Индикаторные трубки.

    Перечень основных методических документов для определения химических веществ в воздухе рабочей зоны

    Руководство Р 2.2.2006-05, Приложение 9 (обязательное) Требования к контролю содержания вредных веществ в воздухе рабочей зоны.

    Методические указания по измерению концентраций вредных веществ в воздухе рабочей зоны: Переработанные технические условия, Выпуски МУ №№ 1 – 51.

    Измерение массовых концентраций 2-метил-1,3,5-тринитробензола (тринитротолуола, ТНТ) в пыли взрывчатых веществ воздуха рабочей зоны методом фотометрии. МУК 4.1.2467-09 (МУ №1693а-77).

    Измерение массовых концентраций проп-2-еналя (акролеина) в воздухе рабочей зоны по реакции с сульфаниловой кислотой методом фотометрии. Мук 4.1.2472-09 (МУ № 2719-83).

    Измерение массовых концентраций дигидросульфида (сероводорода) в воздухе рабочей зоны по реакции с молибдатом аммония методом фотометрии. МУК 4.1.2470-09 (МУ № 5853-91).

    Измерение массовых концентраций диоксида серы (сернистый ангидрид) в воздухе рабочей зоны по реакции с фуксин формальдегидным реактивом методом фотометрии. МУК 4.1.2471-09 (МУ № 1642-77).

    Измерение массовых концентраций оксида и диоксида азота в воздухе рабочей зоны о реакции с реактивом Грисса-Илосваля методом фотометрии. МУК 4.1.2473-09 (МУ № 4751-88).

    Измерение массовых концентраций формальдегида в воздухе рабочей зоны фотометрическим методом. МУК 4.1.2469-09 (МУ № 4524-87).

    В соответствии с Порядком проведения аттестации рабочих мест по условиям труда, утвержденным Приказом Минздравсоцразвития РФ от 26 апреля 2011 года № 342н измерения и оценки оформляются протоколом.

    Все химические вещества, указанные в протоколе измерений, для которых определяются концентрации в воздухе рабочей зоны, должны быть в области аккредитации лаборатории организации, проводящей аттестацию рабочих мест.

    Биологический фактор

    Понятие «биологический фактор»

    Для целей аттестации рабочих мест биологические факторы-это микроорганизмы-продуценты, живые клетки и споры, содержащиеся в бактериальных препаратах, возбудители инфекционных заболеваний.

    Воздействие на организм человека

    В природной среде существуют биологические факторы, вызывающие у человека различные заболевания. Это болезнетворные микроорганизмы, вирусы. Наиболее опасны возбудители инфекционных заболеваний. К числу особо опасных карантинных заболеваний в международном масштабе относятся: чума, оспа, холера, желтая лихорадка, ВИЧ-инфекция и малярия. Важнейшей особенностью инфекционных болезней является то, что непосредственной причиной их возникновения служит внедрение в организм человека вредоносного (патогенного) микроорганизма.

    Непатогенные микроорганизмы-продуценты, живые клетки и споры, содержащиеся в бактериальных препаратах обладают общетоксическим и аллергическим действием на организм человека.

    Классификация

    Микроорганизмы подразделяются на патогенные и непатогенные:

    1. Патогенные микроорганизмы подразделяются на:
    • Возбудители особо опасных инфекций (инфекции с высокой заразностью, быстро распространяющиеся, вызывая эпидемии). Всемирная организация здравоохранения объявила карантинными инфекциями международного значения 4 болезни: чуму, холеру, натуральную оспу (с 1980 г. считается искорененной на Земле) и желтую лихорадку (а также сходные с ней лихорадки Эбола и Марбург). У нас в стране соответствующие эпидемиологические правила распространяются также на туляремию и сибирскую язву;
    • Возбудители других инфекционных заболеваний.

    2. Непатогенные микроорганизмы – это все микроорганизмы, разрешенные Министерством здравоохранения России в качестве промышленных штаммов, относятся к непатогенным или условно-патогенным и относятся к III и IV классам опасности согласно ГОСТ 12.1.007-76 ССБТ «Вредные вещества. Классификация и общие требования безопасности».

    Классы условий труда в зависимости от содержания в воздухе рабочей зоны биологического фактора (превышение ПДК, раз)

    Таблица 2

    Биологический фактор допустимый класс условий труда Вредный класс 3.1 Вредный класс 3.2 Вредный класс 3.3 Вредный класс 3.4 Опасный класс
    Микроорганизмы-продуценты, препараты, содержащие живые клетки и споры микроорганизмов < ПДК 1,1 – 10,0 10,1 – 100,0 >100 -
    Патогенные микроорганизмы:
    Особо опасные инфекции +
    Возбудители других инфекционных заболеваний + +

    Особенности в оценке биологического фактора

    В соответствии с Р 2.2.2006-05 «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» гигиеническая оценка биологического фактора производственной среды для отдельных категорий работников проводится без проведения измерений.

    Условия труда работников специализированных медицинских (инфекционных, туберкулезных и т.п.), ветеринарных учреждений и подразделений, специализированных хозяйств для больных животных относят:

    • к 4 классу опасных (экстремальных) условий, если работники проводят работы с возбудителями (или имеют контакт с больными) особо опасных инфекционных заболеваний;
    • к классу 3.3 – условия труда работников, имеющих контакт с возбудителями других инфекционных заболеваний, а также работников патоморфологических отделений, прозекторских, моргов.
    • к классу 3.2 – условия труда работников предприятий кожевенной и мясной промышленности; работников, занятых ремонтом и обслуживанием канализационных сетей.

    Нормируемые показатели

    В соответствии с Р 2.2.2006-05 «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» измерения проводятся только для микроорганизмов-продуцентов.

    Микроорганизмы-продуценты присутствуют в воздухе рабочей зоны в виде аэрозолей. Величины ПДК микроорганизмов выражены в микробных клетках на 1 м (кл/м3). ПДК для микроорганизмов-продуцентов являются максимальными.

    Перечень основных методических документов, для определения микроорганизмов-продуцентов

    • Руководство Р 2.2.2006-05. Приложение 10. Общие требования к контролю содержания микроорганизмов в воздухе рабочей зоны.
    • ГН 2.2.6.2178-07. «Предельно допустимые концентрации (ПДК) микроорганизмов-продуцентов, бактериальных препаратов и их компонентов в воздухе рабочей зоны».

      1. Седиментационный метод (метод Коха)

      Чашки Петри с селективными средами без крышек помещают на горизонтальные поверхности и выдерживают.

      Рисунок 7 – Чашки Петри с селективными средами.

      Седиментационный метод применяется обычно для качественной характеристики микробного загрязнения воздуха. Но экспериментом доказано, на открытую чашку Петри с питательной средой в течение каждых 5 мин оседают частицы биологического аэрозоля из 10 л воздуха, придав таким образом этому методу возможность ориентировочного количественного учета микроорганизмов в воздушной среде исследуемого объекта.

      2. Аспирационный метод

      Аспирация воздуха в пробоотборное устройство осуществляется через многосопловую пластину, непосредственно под которой устанавливают чашки Петри с плотной питательной средой. При прохождении через сопла решетки поток воздуха с находящимися в нем частицами аэрозоля разделяется на множество струек, скорость течения которых существенно возрастает, вследствие чего взвешенные в воздухе частицы биологического аэрозоля с силой ударяются о питательную среду, фиксируясь на ее поверхности. После экспозиции чашки закрывают, переворачивают, помещают в термостат и инкубируют при температуре 37±1 °С в течение 24±2 ч. После инкубации проводят учет количества колоний выросших микроорганизмов и при необходимости идентификацию микроорганизмов до рода и вида.

      Рисунок 8 – Термостат с чашкой Петри.

      Наиболее вероятные значения классов условий труда

      Гигиеническая оценка биологического фактора производственной среды для отдельных категорий работников проводится без проведения измерений.

      К классу 3.2 – относятся условия труда:

      • работников, занятых ремонтом и обслуживанием канализационных сетей ;
      • уборщиков общественных туалетов на предприятиях, вокзалах, железнодорожных станциях, аэропортах, торговых, зрелищных, спортивно-массовых учреждений и других учреждений и объектов массового скопления людей, где для обслуживания и уборки туалетов используется закрепленный штатный персонал ;
      • монтеров текущего и капитального ремонта железнодорожных путей, работающих на участках, где осуществляется сброс канализационных стоков из пассажирских вагонов ;
      • проводников пассажирских вагонов поездов дальнего следования и межобластного сообщения ;
      • обслуживающего персонала замкнутых систем сбора канализационных стоков (ЭЧТК) на пассажирских вагонах и станциях обслуживания (СОК) на железнодорожном транспорте .

      Требования к содержанию протоколов

      В соответствии с Порядком проведения аттестации рабочих мест по условиям труда, утвержденного Приказом Минздравсоцразвития РФ от 26 апреля 2011 года № 342н, измерения и оценки оформляются протоколом.

      Протокол должен содержать следующую информацию:

      Полное или сокращенное наименование работодателя;

      Фактический адрес местонахождения работодателя;

      Идентификационный номер протокола;

      Наименование рабочего места, а также профессии, должности работника, занятого на данном рабочем месте (по ОК 016-94);

      Дата проведения измерений и оценок (их отдельных показателей);

      Наименование структурного подразделения работодателя (при наличии);

      Наименование аттестующей организации, сведения об ее аккредитации, а также сведения об аккредитации испытательной лаборатории аттестующей организации (дата и номер аттестата аккредитации);

      Наименование измеряемого фактора;

      Сведения о применяемых средствах измерений (наименование прибора, инструмента, заводской номер, срок действия и номер свидетельства о поверке);

      Методы проведения измерений и оценок с указанием нормативных документов, на основании которых проводятся данные измерения и оценки;

      Реквизиты нормативных правовых актов, регламентирующих предельно допустимые концентрации (далее - ПДК), предельно допустимые уровни (далее - ПДУ), а также нормативные уровни измеряемого фактора;

      Место проведения измерений с указанием наименования рабочего места в соответствии с перечнем рабочих мест, подлежащих аттестации, с приложением, при необходимости, эскиза помещения;

      Нормативное и фактическое значение уровня измеряемого фактора и продолжительность его воздействия на всех местах проведения измерений;

      Класс условий труда по данному фактору;

      Заключение по фактическому уровню фактора на всех местах проведения измерений, итоговый класс условий труда по данному фактору.

      Мероприятия по снижению воздействия биологического фактора

      В разделе 5.2 Руководства Р 2.2.2006-05 определено, что условия труда отдельных категорий работников по биологическому фактору относятся к классам 3.2 или 3.3 без проведения исследований, так как они подвергаются риску воздействия патогенных микроорганизмов, являющихся возбудителями инфекционных заболеваний. Данный фактор считается неустранимым, а применение СИЗ не снижает класс условий труда.

      АПФД

      Понятие фактора «АПФД»

      (пыли) – физический фактор это те же химические вещества встречающиеся в природе или получаемые химическим синтезом, но для их контроля используется метод весового (гравиметрического) анализа.

      Фиброгенное действие пыли – это действие, при котором в легких происходит разрастание соединительной ткани, нарушающее нормальное строение и функции органа.

      Воздействие АПФД на организм человека:

      Затрудняет дыхание, вызывает кашель и чихание;

      Токсичная пыль может привести к отравлению, удушью и др.;

      Ухудшает видимость, приводит к раздражению слизистой оболочки глаз и повышенному слезотечению;

      Вызывает раздражение кожи;

      При ухудшении видимости повышается риск травмирования.

      Классификация

      Гигиеническая оценка условий труда при содержании в воздухе рабочей зоны пылей производится в зависимости от типа и состава пыли и её концентрации.

      Аэрозоли преимущественно фиброгеного действия по воздействию

      • высоко- или умереннофиброгенные АПФД;
      • слабофиброгенные АПФД.

      Аэрозоли преимущественно фиброгеного действия по по составу на организм человека подразделяются на:

      • пыли, содержащие природные минеральные волокна (асбесты, цеолиты);
      • пыли, содержащие искусственные (стеклянные, керамические, углеродные и др.)

      Наиболее вероятные значения

      Для высоко- или умереннофиброгенных АПФД предельно допустимые концентрации составляют: ПДК ≤ 2 мг/м3.

      Для слабофиброгенных АПФД предельно допустимые концентрации составляют: ПДК > 2 мг/м3

      Нормируемые показатели

      Классы условий труда в зависимости от содержания в воздухе рабочей зоны АПФД, пылей, содержащих природные и искусственные волокна, и пылевых нагрузок на органы дыхания (кратность превышения ПДК и КПН)

      Таблица 3

      В соответствии с ГН 2.2.5.1313-03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны» гигиеническая оценка условий труда при содержании в воздухе рабочей зоны пылей производится в зависимости от типа и состава пыли и ее концентрации.

      Класс условий труда и степень вредности при профессиональном контакте с аэрозолями преимущественно фиброгенного действия должен определяться исходя из фактических величин среднесменных концентраций АПФД и кратности превышения среднесменных ПДК.

      Для АПДФ существуют только среднесменные концентрации

      Если у АПФД есть %%\text{ПДК}_{\text{мр}}%%; все равно класс условий труда для АПФД выставляется только по %%\text{ПДК}_{\text{сс}}%% для постоянных рабочих мест).

      Если мы имеем превышение ПДКмр в течение смены не менее 3-х раз, то класс условий труда увеличивается на одну ступень.

      Основным показателем оценки степени воздействия АПФД на органы дыхания работников является . Расчет пылевой нагрузки является обязательным, если среднесменная концентрация превышает ПДК.

      Пылевая нагрузка ПН на органы дыхания работника (или группы работников, если они выполняют аналогичную работу в одинаковых условиях) рассчитывается исходя из фактических среднесменных концентраций АПФД в воздухе рабочей зоны, объема легочной вентиляции (зависящего от тяжести труда) и продолжительности контакта с пылью:

      $$ ПН = К \times N \times T \times Q $$

      где K – фактическая среднесменная концентрация пыли в зоне дыхания работника, мг/м3;

      N – число рабочих смен, отработанных в календарном году в условиях воздействия АПФД;

      T – количество лет контакта с АПФД;

      Q – объем легочной вентиляции за смену, м3

      Общая оценка по фактору АПФД

      При соответствии фактической пылевой нагрузки контрольному уровню условия труда относят к допустимому классу и подтверждают безопасность продолжения работы в тех же условиях.

      Кратность превышения контрольных пылевых нагрузок указывает на класс вредности условий труда по данному фактору (табл.3).

      При превышении контрольных пылевых нагрузок рекомендуется использовать принцип «защиты временем».

      Методические документы для оценки АПДФ в воздухе рабочей зоны

      • Руководство Р 2.2.2006–05. «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда», Приложение 9 (обязательное) «Требования к контролю содержания вредных веществ в воздухе рабочей зоны».
      • МУК 4.1.2468–09. «Измерение массовых концентраций пыли в воздухе рабочей зоны предприятий горнорудной и нерудной промышленности».
      Средства измерений

      АПФД классическим методом отбираются на фильтры АФА.

      Рисунок 9 – Аспиратор с фильтрами.

      Требования к содержанию протокола

      В соответствии с Порядком проведения аттестации рабочих мест по условиям труда, утвержденным Приказом Минздравсоцразвития РФ от 26 апреля 2011 года № 342н, измерения и оценки оформляются протоколом.

      Протокол должен содержать следующую информацию:

      Полное или сокращенное наименование работодателя;

      Фактический адрес местонахождения работодателя;

      Идентификационный номер протокола;

      Наименование рабочего места, а также профессии, должности работника, занятого на данном рабочем месте (по ОК 016-94);

      Дата проведения измерений и оценок (их отдельных показателей);

      Наименование структурного подразделения работодателя (при наличии);

      Наименование аттестующей организации, сведения об ее аккредитации, а также сведения об аккредитации испытательной лаборатории аттестующей организации (дата и номер аттестата аккредитации);

      Наименование измеряемого фактора;

      Сведения о применяемых средствах измерений (наименование прибора, инструмента, заводской номер, срок действия и номер свидетельства о поверке);

      Методы проведения измерений и оценок с указанием нормативных документов, на основании которых проводятся данные измерения и оценки;

      Реквизиты нормативных правовых актов, регламентирующих предельно допустимые концентрации (далее – ПДК), предельно допустимые уровни (далее – ПДУ), а также нормативные уровни измеряемого фактора;

      Место проведения измерений с указанием наименования рабочего места в соответствии с перечнем рабочих мест, подлежащих аттестации, с приложением, при необходимости, эскиза помещения;

      Нормативное и фактическое значение уровня измеряемого фактора и продолжительность его воздействия на всех местах проведения измерений;

      Класс условий труда по данному фактору;

      Заключение по фактическому уровню фактора на всех местах проведения измерений, итоговый класс условий труда по данному фактору.

      Мероприятия по снижению воздействия вредных химических факторов и аэрозолей преимущественно фиброгенного действия

      Мероприятия по снижению воздействия вредных химических факторов и аэрозо-лей преимущественно фиброгенного действия можно объединить в следующие основные группы:

      • оборудование рабочих мест вентиляционными системами и установками;
      • приобретение и установка систем пылеподавления и пылеудаления;
      • модернизация существующих и разработка новых технологических процессов и производственного оборудования;
      • паспортизация и ремонт вентиляционных установок;
      • использование средств индивидуальной защиты (СИЗ) органов дыхания.

    В настоящее время известно около семи миллионов химических веществ и соединений, из которых 60 тысяч находят применение в деятельности человека. На международном рынке в последнее время ежегодно появляется от 500 до 1000 новых химических соединений и смесей. Химические загрязнения помимо их "производителя" - человека - оказывают негативные воздействия на растительный и животный мир, материалы, строения и конструкции, произведения искусства и исторические памятники.

    Химические вещества по негативным последствиям их воздействия на человека имеют следующую классификацию:

    общетоксические (ядовитые) - вызывающие отравление всего организма (оксид углерода, цианистые соединения, свинец, ртуть, бензол, мышьяк и его соединения и другие);

    раздражающие - вызывающие раздражение дыхательного тракта и слизистых оболочек (хлор, аммиак, сернистый газ, фтористый водород, оксиды азота, озон, ацетон и другие);

    сенсибилизирующие - действующие как аллергены (формальдегид, растворители и лаки на основе нитро - и нитрозосоединений и другие);

    канцерогенные - вызывающие раковые заболевания (никель и его соединения, амины, оксиды хрома, асбест и другие);

    мутагенные - приводящие к изменению наследственной информации (свинец, марганец, радиоактивные вещества и другие);

    влияющие на репродуктивную (детородную) функцию (ртуть, свинец, марганец, стирол, радиоактивные вещества и другие).

    Ряд вредных веществ (в основном пыли) оказывают на организм человека преимущественно фиброгенное действие, вызывая раздражение слизистых оболочек дыхательных путей и оседая в легких, практически не попадая в круг кровообращения вследствие плохой растворимости в биологических средах (в крови, лимфе).

    В организм человека химические вещества могут проникать через органы дыхания, желудочно-кишечный тракт, кожные покровы и слизистые оболочки.

    Среди химических веществ, представляющих опасность для человека, условно выделяют отдельные группы, получившие специфические названия, например, ксенобиотики, вредные вещества, тяжелые металлы, ядохимикаты, пыли, сильнодействующие ядовитые вещества и другие.

    Ксенобиотиками , то есть чуждыми жизни (от "ксенос" - чужой и "био" - жизнь) называют вещества искусственного происхождения, которые наносят вред естественной среде обитания и человеку. Как правило, искусственно созданные химические соединения, предметы, различные отходы обладают особыми свойствами, не совместимыми с экологическими системами и характеристиками самого человека. Они имеют конечный срок полезного использования, разлагаются очень медленно, загрязняют атмосферу, гидросферу, почву, непосредственно или косвенно оказывают отрицательное влияние на людей и все живое.

    Вредным называется вещество, которое при контакте с организмом человека может вызвать заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами как непосредственно в процессе контакта с веществом, так и в отдаленные сроки жизни настоящего и последующих поколений. По степени воздействия на организм вредные вещества подразделяются на 4 класса опасности: 1-й - вещества чрезвычайно опасные; 2-й - вещества высоко опасные; 3-й - вещества умеренно опасные; 4-й - вещества мало опасные.

    Класс опасности вредных веществ устанавливают в зависимости от нормы и показателей, указанных в табл. 1.

    Отравления протекают в острой и хронической формах. Острые отравления характеризуются кратковременностью действия токсичных веществ; возникают при поступлении в организм вредного вещества в относительно больших количествах - при высоких концентрациях в воздухе, воде, почве или продуктах питания, ошибочном приеме внутрь, сильном загрязнении кожных покровов.

    Таблица 1 - Установление класса опасности вредных веществ

    Наименование показателя

    Нормы для класса опасности

    Предельно допустимая концентрация

    (ПДК) вредных в-в в воздухе рабочей зоны,

    Средняя смертельная дота при введении в

    желудок, мг/кг

    Средняя смертельная доза при нанесении

    на кожу, мг/кг

    Средняя смертельная концентрация в

    воздухе, мг/кг

    Более 50000

    Ртуть, свинец,

    уран, фосфор

    Бензол, йод,

    хлор, оксиды

    серная кислота,

    марганец,

    медь, никель.

    сероводород

    Вольфрам,

    молибден,

    оксиды цинка,

    кремния, серы,

    кварцитовая

    углерода,

    угольная

    Термины, приведенные в таблице, имеют следующие определения.

    Средняя смертельная доза при введении в желудок: доза вещества, вызывающая гибель 50 животных при однократном введении в желудок.

    Средняя смертельная концентрация в воздухе: концентрация вещества, вызывающая гибель 50 % животных при двух-четырехчасовом ингаляционным воздействии.

    Смертельная доза при нанесении на кожу: доза, вызывающая гибель 50 % животных при однократном нанесении на кожу.

    Коэффициент возможности ингаляционного отравления: отношение максимально достижимой концентрации вредного вещества в воздухе при 200 С к средней смертельной концентрации вещества для мышей.

    Хронические отравления возникают постепенно, при длительном поступлении яда в организм в относительно небольших количествах. Отравления развиваются вследствие накопления массы вредного вещества в организме (материальной кумуляции) или вызываемых в организме нарушений (функциональная кумуляция). Хронические отравления органов дыхания могут быть следствием перенесенной однократной или нескольких повторных острых интоксикаций.

    Тяжелые металлы . Среди химических веществ, загрязняющих внешнюю среду (воздух, воду, почву), тяжелые металлы и их соединения образуют значительную группу токсикантов, оказывающих существенное неблагоприятное воздействие на человека.

    Опасность тяжелых металлов обусловлена их устойчивостью во внешней среде, растворимостью в воде, сорбцией почвой, растениями, что в совокупности приводит к накоплению тяжелых металлов в среде обитания человека.

    Термин "тяжелые металлы" связан с высокой относительной атомной массой. Одним из признаков, которые позволяют относить металлы к тяжелым, является их плотность. К тяжелым металлам относятся химические элементы с относительной плотность более 6. Таких элементов более 40. Число наиболее опасных тяжелых металлов с учетом их токсичности, стойкости и способности накапливаться во внешней среде, а также масштабов распространения, значительно меньше. Это - ртуть, свинец, кадмий, кобальт, никель, цинк, олово, сурьма, медь, молибден, ванадий, мышьяк.

    Поступление тяжелых металлов в окружающую среду происходит в виде газов и аэрозолей (возгон металлов и пылевидные частицы) и в жидком виде (технологические сточные воды). Рассеивание металлов может происходить на сотни и тысячи километров, приобретая межконтинентальные масштабы, особенно при сжигании минерального топлива и выбросах в атмосферу при высокотемпературных технологических процессах (металлургии, обжиге цементного сырья и т.п.). Значительная часть полезных компонентов рудных ископаемых рассеивается при транспортировке, обогащении, сортировке. Миграция (подвижность) элементов зависит от летучести или растворимости соединений, температуры, кислотно-щелочного равновесия и других факторов. Установлено, что процесс накапливания тяжелых металлов в почве идет быстрее, чем их удаление. Период полуудаления из почвы цинка составляет 500 лет, кадмия - 1100 лет, меди - 1500 лет, свинца - несколько тысяч лет.

    Тяжелые металлы и их соединения могут поступать в организм человека через легкие, слизистые оболочки, кожу и желудочно-кишечный тракт. Они являются факторами повышенного риска сердечно-сосудистых заболеваний.

    Тяжелые металлы особенно опасны ввиду своей способности к биоаккумуляции.

    Биоаккумуляция заключается в том, что малые дозы, получаемые в течение длительного времени, накапливаются в организме, создают в итоге токсичную концентрацию и наносят ущерб здоровью. Тяжелые металлы, как простые химические элементы, невозможно разрушить в результате химических процессов, которые протекают в нашем организме.

    Кроме того, тяжелые металлы прочно связываются с белками и поэтому не выводятся из организма с мочой. Биоаккумуляция может усугубляться в пищевой цепи. Организмы, находящиеся в ее основе, поглощают химикаты из внешней среды и аккумулируют их в своих тканях. Питаясь этими организмами, животные следующего трофического уровня получают исходно более высокие дозы, накапливают более высокие концентрации и т.д. В результате на вершине пищевой цепи концентрация химиката в организмах может стать в 100 тысяч раз больше, чем во внешней среде. Такое накопление вещества при прохождении через пищевую цепь называют биоконцентрированием.

    В начале 1970-х годов произошел трагический эпизод, известный как болезнь Минаматы, продемонстрировавший возможность биоаккумуляции ртути и др. тяжелых металлов Болезнь носит название маленького рыбацкого поселка в Японии. В середине 1950-х годов в Минамате у кошек стали замечать судороги, за которыми следовал частичный паралич, а затем - кома и смерть. Сначала думали, что страдают только кошки, особого значения этому не придавали. Однако, когда такие же симптомы стали проявляться у людей, беспокойство быстро возросло. Кроме того, стали замечаться случаи умственной отсталости, психические расстройства и врожденные дефекты. Со временем специалисты установили причину: острое ртутное отравление. Химическое предприятие, расположенное неподалеку, сбрасывало содержащие ртуть отходы в реку, впадавшую в залив, где рыбачили жители Минаматы. Оседавшую с детритом ртуть сначала поглощали бактерии, а затем она концентрировалась в пищевой цепи, попадая через рыб к кошкам и людям. Кошки пострадали в первую очередь, потому что питались исключительно остатками рыбы. К тому времени, когда ситуация была взята под контроль, погибли около 50 человек, еще 150 получили серьезные заболевания костей и нервной системы. До сих пор о трагедии напоминают уродливые тела и умственная отсталость жителей Минаматы.

    Ядохимикаты . Человек создал много химических препаратов, преследуя свои хозяйственные и иные цели. Многочисленную группу ядохимикатов представляют пестициды.

    Ставшая уже классикой история ДДТ, широко применявшегося в 1950-е годы, иллюстрирует существующую угрозу.

    В 1938 г. швейцарский химик Пауль Мюллер натолкнулся на дихлордифенилтрихлорэтан (ДДТ), синтезированный за полвека до этого.

    ДДТ оказался чрезвычайно токсичным для насекомых, и, казалось, относительно безвредным для человека и животных. Производить его было совсем не дорого. Он обладал широким спектром действия, т.е. использовался против многих видов вредителей и был очень стоек, т.е. с трудом разрушался в окружающей среде и обеспечивал продолжительную защиту. Это свойство давало дополнительную экономию, т.к. отпадала необходимость в дополнительных затратах труда и материала на неоднократные обработки.

    ДДТ был настолько эффективен, что снижение численности вредителей во многих случаях привело к резкому росту урожаев. В сельском хозяйстве смогли отказаться от более трудоемких методов борьбы, в частности от севооборота и уничтожения остатков, смогли выращивать менее устойчивые, но более урожайные сорта, распространить некоторые культуры в новые климатические зоны, где ранее они были бы погублены насекомыми.

    Кроме того, ДДТ оказался эффективным в борьбе против насекомых, переносящих инфекции. Например, во время второй мировой войны военные использовали его против вшей, переносящих сыпной тиф, и результате эта война стала первой, в которой от тифа погибло меньше людей, чем от ранений.

    Всемирная организация здравоохранения при ООН распространяла ДДТ в тропических странах для борьбы с комарами и достигла заметного сокращения смертности от малярии. Достоинства ДДТ казались столь выдающимися, что в 1948 году Мюллер получил за свое открытие Нобелевскую премию.

    Однако в 1950-60 годы орнитологи заменили катастрофическое сокращение популяций многих видов птиц, соответствующих вершине пищевых цепей. Рыбоядные птицы, например, белоголовый орлан и скопа, так пострадали, что возникла угроза их полного исчезновения. Исследования показали, что проблема связана с размножением: яйца разбивались в гнезде до вылупления птенцов. Оказывается, скорлупа этих яиц содержала высокие концентрации ДДТ. ДДТ влияет на обмен кальция, а в результате птицы откладывают яйца с тонкой скорлупой. Дальнейшие исследования показали, что птицы получали высокие дозы ДДТ в процессе биоконцентрирования в пищевых цепях. На рыбоядных птиц он влияет сильнее всего, так как огромные количества ДДТ стекают в водоемы, где в длинных пищевых цепях происходит его многоступенчатое биоконцентрирование.

    ДДТ накапливается в жировых отложениях человека и практически всех остальных животных, включая арктических тюленей и антарктических пингвинов. Период полураспада ДДТ - 20 лет.

    Гербициды (от "hеrbа" - трава) - химические вещества из группы пестицидов, предназначенные для избирательного уничтожения нежелательной, главным образом, сорной растительности. Применение гербицидов заменяет прополку сорняков. Многие из них, попадая в почву и водоемы, оказывают токсическое действие и могут вызывать гибель животных, растений, людей. Использование гербицидов во многих странах регламентировано законом.

    Дефолианты (от "fоlium" - лист) - химические вещества (диоксин, бутифос и т.д.), предназначенные для провоцирования искусственного опадания листвы растений (например, для облегчения механизированной уборки хлопка). Без строжайшего соблюдения доз и мер предосторожности дефолианты представляют серьезную опасность для человека и животных.

    Зооциды - химические вещества, предназначенные для уничтожения вредных, преимущественно позвоночных, животных-грызунов, в частности, мышей и крыс, а также птиц, сорной рыбы и других.

    Инсектициды (от "insесtum" - насекомые) - пестициды, предназначенные для борьбы с нежелательными (с точки зрения человека) в хозяйствах и природных сообществах насекомыми.

    Фунгициды (от "fungus" - гриб) - химические вещества, предназначенные для борьбы с грибами-возбудителями болезней, разрушающими древесные конструкции и повреждающими хранящиеся материальные ценности.

    Детергенты (от "dеiеrgео" - стираю) - химические соединения, понижающие поверхностное натяжение воды и используемые в качестве моющего средства или эмульгатора. Детергенты - широко распространенные и опасные для человека, животных и растений, химические загрязнители воды, водоемов, почв.

    Пыль. Появление механических примесей - пыли - в атмосфере связано с выделением различными природными или техногенными источниками тонкодисперсных частиц отложений или разрушенных материалов органического и неорганического происхождения.

    Частицы пыли могут иметь пластинчатую, нитевидную и зернистую формы.

    По среднему размеру частиц (диаметру) различают пыль:

    макроскопическую (более 10 мкм), выпадающую из неподвижного воздуха с возрастающей скоростью;

    микроскопическую (0,25-10 мкм), оседающую с постоянной скоростью;

    ультрамикроскопическую (0,01-0,25 мкм), не оседающую в результате броуновского движения;

    субмикроскопическую (менее 0,01 мкм).

    Время падения частиц пыли в неподвижном воздухе с высоты 1 м и зависимости от размера изменяется от 2,2 мин (более 10 мкм) до 3,5 ч (I мкм) и 46 ч (0,2 мкм).

    Наиболее вредной для организма человека является пыль размером 0,2 - 5 мкм. Пыль меньшего размера может удаляться из легких вместе с выдыхаемым воздухом, большего (до 12 мкм) - задерживаться в верхних дыхательных путях.

    Вредное воздействие пыль оказывает на органы дыхания, пищеварения, кожные покровы, слизистые оболочки и глаза в форме соответственно пневмокониозов, отравлений и опухолей, дерматитов и экзем, конъюнктивитов. Ядовитые пыли (свинец, цинк, мышьяк и другие) действуют преимущественно на органы пищеварения, слизистые оболочки и глаза, неядовитые - засоряют верхние дыхательные пути, вызывают бронхиты, гнойничковые заболевания кожи. Наиболее частыми являются заболевания бронхитом и пневмокониозы.

    Бронхиты возникают при задержке крупных частиц (более 5 мкм) в верхних дыхательных путях, пневмокониозы - заболевания органов дыхания с изменением ткани - возникают в результате действия пыли размером частиц менее 5 мкм. В зависимости от химического состава пыли могут развиваться различные виды пневмокониозов: силикоз (SiО2), силикатоз (Si02 в комплексе с другими веществами), асбестоз и т.п.

    Сильнодействующие ядовитые вещества . Специалисты в области военного дела и гражданской обороны выделяют особую группу веществ - сильнодействующие ядовитые вещества (СДЯВ). СДЯВ - это образующиеся и больших количествах в промышленности, на транспорте, па складах, при военных действиях химические соединения, способные при авариях переходить в атмосферу и вызывать массовое поражение (отравление) людей и животных, а также заражать окружающую среду.

    Особенностями СДЯВ являются:

    способность по направлению ветра переноситься на большие расстояния, в результате чего вызывать массовые поражение людей;

    объемность действия, то есть способность зараженного воздуха проникать в негерметизированные помещения;

    большое разнообразие СДЯВ, что создает трудности в создании средств индивидуальной защиты;

    способность многих СДЯВ оказывать не только непосредственное действие, но и заражать людей посредством воды, продуктов, окружающих предметов.

    Объекты экономики, при авариях или разрушениях которых могуч произойти массовые поражения людей, животных и растений СДЯВ, относят к химически опасным объектам. На территории России число таких объектов превышает 3000. Особую опасность представляет железнодорожный транспорт, испытывающий наибольшую нагрузку при транспортировке СДЯВ.

    Облако СДЯВ, передвигаясь по ветру, создает зону заражения.

    Зона заражения - это территория непосредственного воздействия СДЯВ, а также местность, в пределах которой распространилось облако СДЯВ с поражающей концентрацией. Масштабы (глубина и площадь) зависят от величины аварийного выброса, физико-химических и токсических свойств вещества, метеоусловий (температура воздуха, скорость ветра, степень вертикальной устойчивости воздуха), характера местности (рельеф, растительность, застройка) и т.п. Внешние границы определяются по пороговой ингаляционной токсодозе, вызывающей начальные симптомы поражения. Важнейшей характеристикой опасности СДЯВ является относительная плотность их паров (газов). Если плотность пара какого-либо вещества меньше 1,0 (легче воздуха), он будет быстро рассеиваться, Большую опасность представляют СДЯВ, относительная плотность паров которых больше 1 - они дольше удерживаются у поверхности земли, накапливаются в различных углублениях местности, их воздействие на людей и окружающую среду является более продолжительным и опасным.

    Совокупное воздействие факторов среды на человека

    В природно-техногенной среде редко встречается изолированное действие вредных факторов, обычно человек подвергается совокупному их воздействию. При этом различают сочетанное, комбинированное и комплексное воздействия.

    1. Под сочетанным действием понимают действие неблагоприятных факторов разной природы (физических, химических, биологических).

    2. Под комбинированным действием понимают влияние факторов одной природы, чаще всего химических веществ. Комбинированное действие - это одновременное или последовательное действие на организм нескольких токсикантов при одном и том же пути поступления.

    Различают несколько типов комбинированного действия в зависимости от эффектов токсичности:

    Аддитивное действие - это суммарный эффект смеси, равный сумме эффектов действующих компонентов. Аддитивность характерна для веществ однонаправленного действия, когда компоненты смеси оказывают влияние на одни и те же системы организма, причем при количественно одинаковой замене компонентов друг другом токсичность смеси не меняется.

    При потенцированном действии (синергизме) компоненты смеси действуют так, что одно вещество усиливает действие другого. Эффект комбинированного действия при синергизме больше аддитивного. Потенцирование отмечается при совместном действии диоксида серы и хлора; алкоголь повышает опасность отравления ртутью и некоторыми другими промышленными ядами.

    При антагонистическом действии компоненты смеси действуют так, что одно вещество ослабляет действие другого. Эффект комбинированного действия меньше аддитивного.

    При независимом действии комбинированный эффект не отличается от изолированного действия каждого токсиканта в отдельности, при этом преобладает эффект наиболее токсичного вещества. Комбинации веществ с независимым действием встречаются достаточно часто, например бензол и раздражающие газы, смесь продуктов сгорания и пыли.

    3. Под комплексным воздействием понимается влияние ядов, поступающих в организм одновременно, но разными путями