Принцип действия электронного микроскопа. Ограничения электронного микроскопа. Электронный микроскоп: эпизод I

Московский институт электронной техники

Лаборатория электронной микроскопии С.В. Седов

[email protected]

Принцип работы современного растрового электронного микроскопа и его использование для исследования объектов микроэлектроники

Цель работы: знакомство с методиками исследования материалов и микроэлектронных структур при помощи растрового электронного микроскопа.

Продолжительность работы: 4 ч.

Приборы и принадлежности: растровый электронный микроскоп Philips-

SEM-515, образцы микроэлектронных структур.

Устройство и принцип работы растрового электронного микроскопа

1. Введение

Растровая электронная микроскопия - это исследование объекта путем облучения тонко сфокусированным электронным пучком, который развертывается в растр по поверхности образца. В результате взаимодействия сфокусированного электронного пучка с поверхностью образца возникают вторичные электроны, отраженные электроны, характеристическое рентгеновское излучение, ожэ-электроны и фотоны различных энергий. Они рождаются в определенных объемах - областях генерации внутри образца и могут быть использованы для измерения многих его характеристик, таких как топография поверхности, химический состав, электрофизические свойства и т д.

Основной причиной широкого использования растровых электронных микроскоов является высокое разрешение при исследовании массивных объектов, достигающее 1,0 нм (10 Å). Другой важной чертой изображений, получаемых в растровом электронном микроскопе является их объемность, обусловленная большой глубиной резкости прибора. Удобство применения растрового микроскопа в микро-и нанотехнологии объясняется относительной простотой подготовки образца и оперативностью исследования, что позволяет использовать его для межоперационного контроля технологических параметров без значительных потерь времени. Изображение в растровом микроскопе формируется в виде телевизионного сигнала, что существенно упрощает его ввод в компьютер и дальнейшую программную обработку результатов исследований.

Развитие микротехнологий и появление нанотехнологий, где размеры элементов существенно меньше длины волны видимого света, делает растровую электронную микроскопию практически единственной неразрушающей методикой визуального контроля при производстве изделий твердотельной электроники и микромеханики.

2. Взаимодействие электронного луча с образцом

При взаимодействии пучка электронов с твердой мишенью возникает большое число различного рода сигналов. Источником этих сигналов являются области излучения, размеры которых зависят от энергии пучка и атомного номера бомбардируемой мишени. Размерами этой области, при использовании определенного сорта сигнала, определяется разрешение микроскопа. На рис. 1 показаны области возбуждения в образце для разных сигналов.

Полное распределение по энергии электронов, излучаемых образцом

приведено на рис.2. Оно получено при энергии падающего пучка Е 0= 180эВ, по оси ординат отложено число эмиттированых мишенью электронов J s (E), а по оси абсцисс - энергия Е этих электронов. Заметим, что вид зависимости,

приведенной на рис.2, сохраняется и для пучков с энергией 5 – 50 кэВ, используемых в растровых электронных микроскопах.

Г
руппуI составляют упруго отраженные электроны с энергией, близкой к энергии первичного пучка. Они возникают при упругом рассеянии под большими углами. С увеличением атомного номера Z растет упругое рассеяние и увеличивается доля отраженных электронов . Распределение отраженных электронов по энергиям для некоторых элементов приведено на рис.3.

Угол рассеяния 135 0
, W=E/E 0 - нормированная энергия, d/dW - число отраженных электронов на падающий электрон и на единицу энергетического интервала. Из рисунка видно, что при увеличении атомного номера не только растет число отраженных электронов, но и их энергия становится ближе к энергии первичного пучка. Это приводит к возникновению контраста по атомному номеру и позволяет исследовать фазовый состав объекта.

Группа II включает в себя электроны, подвергшиеся многократному неупругому рассеянию и излученные к поверхности после прохождения более или менее толстого слоя материала мишени, потеряв при этом определенную часть своей первоначальной энергии.

Э
лектроны группыIII являются вторичными электронами с малой энергией (менее 50 эВ), которые образуются при возбуждении первичным пучком слабосвязаных электронов внешних оболочек атомов мишени. Основное влияние на количество вторичных электронов оказывает топография поверхности образца и локальные электрические и магнитные поля. Количество выходящих вторичных электронов зависит от угла падения первичного пучка (рис.4). Пусть R 0 – максимальная глубина выхода вторичных электронов. Если образец наклонен, то длина пути в пределах расстояния R 0 от поверхности возрастает: R = R 0 sec 

Следовательно возрастает и количество соударений, при которых рождаются вторичные электроны. Поэтому незначительное изменение угла падения приводит к заметному изменению яркости выходного сигнала. Благодаря тому, что генерация вторичных электронов происходит в основном в приповерхностной области образца (рис.1), разрешение изображения во вторичных электронах близко к размерам первичного электронного пучка.

Характеристическое рентгеновское излучение возникает в результате взаимодействия падающих электронов с электронами внутренних K, L, или М оболочек атомов образца. Спектр характеристического излучения несет информацию о химическом составе объекта. На этом основаны многочисленные методы микроанализа состава. Большинство современных растровых электронных микроскопов оснащено энергодисперсионными спектрометрами для качественного и количественного микроанализа, а так же для создания карт поверхности образца в характеристическом рентгеновском излучении определенных элементов.

3 Устройство растрового электронного микроскопа .

Электронный микроскоп Электронный микроскоп прибор, позволяющий получать изображение объектов с максимальным увеличением до 10 6 раз, благодаря использованию вместо светового потока пучка электронов. Разрешающая способность электронного микроскопа в 1000÷10000 раз превосходит разрешение светового микроскопа и для лучших современных приборов может составлять несколько ангстрем (10 -7 м).


Появление электронного микроскопа стало возможным после ряда физических открытий конца XIX начала XX века. Это открытие в 1897 году электрона (Дж.Томсон) и экспериментальное обнаружение в 1926 году волновых свойств электрона (К.Дэвиссон, Л.Гермер), подтверждающее выдвинутую в 1924 году де Бройлем гипотезу о корпускулярно-волновом дуализме всех видов материи. В 1926 году немецкий физик X.Буш создал магнитную линзу, позволяющую фокусировать электронные лучи, что послужило предпосылкой для создания в 1930-х годах первого электронного микроскопа. В 1931 году Р.Руденберг получил патент на просвечивающий электронный микроскоп, а в 1932 году М.Кнолль и Э.Руска построили первый прототип современного прибора. Эта работа Э.Руски в 1986 году была отмечена Нобелевской премией по физике, которую присудили ему и изобретателям сканирующего зондового микроскопа Герду Карлу Биннигу и Генриху Рореру. В 1938 Руска и Б. фон Боррис построили прототип промышленного просвечивающего электронного микроскопа для фирмы «Сименс-Хальске» в Германии; этот прибор в конце концов позволил достичь разрешения 100 нм. Несколькими годами позднее А.Пребус и Дж.Хиллер построили первый ОПЭМ высокого разрешения в Торонтском университете (Канада). В конце 1930-х начале 1940-х годов появились первые растровые электронные микроскопы (РЭМ), формирующие изображение объекта при последовательном перемещении электронного зонда малого сечения по объекту. Массовое применение этих приборов в научных исследованиях началось в 1960-ых годах, когда они достигли значительного технического совершенства. РЭМ в его нынешней форме был изобретен в 1952 Чарльзом Отли. Правда, предварительные варианты такого устройства были построены Кноллем в Германии в 1930-х годах и Зворыкиным с сотрудниками в корпорации RCA в х годах, но лишь прибор Отли смог послужить основой для ряда технических усовершенствований, завершившихся внедрением в производство промышленного варианта РЭМ в середине 1960-х годов.


Существуют два основных вида электронных микроскопов. просвечивающий электронный микроскопВ 1930-х годах был изобретен обычный просвечивающий электронный микроскоп (ОПЭМ), растровый (сканирующий) электронный микроскоп в 1950-х годах – растровый (сканирующий) электронный микроскоп (РЭМ)


Просвечивающий электронный микроскоп от ультратонкого объекта Просвечивающий электронный микроскоп (ПЭМ) это установка, в которой изображение от ультратонкого объекта (толщиной порядка 0,1 мкм) формируется в результате взаимодействия пучка электронов с веществом образца с последующим увеличением магнитными линзами (объектив) и регистрацией на флуоресцентном экране. Просвечивающий электронный микроскоп во многом подобен световому микроскопу, но только для освещения образцов в нем используется не свет, а пучок электронов. В нем имеются электронный прожектор, ряд конденсорных линз, объективная линза и проекционная система, которая соответствует окуляру, но проецирует действительное изображение на люминесцентный экран или фотографическую пластинку. Источником электронов обычно служит нагреваемый катод из вольфрама или гексаборида лантана. Катод электрически изолирован от остальной части прибора, и электроны ускоряются сильным электрическим полем. Для создания такого поля катод поддерживают под потенциалом порядка В относительно других электродов, фокусирующих электроны в узкий пучок. Эта часть прибора называется электронным прожектором. одной миллиардной атмосферного.Поскольку электроны сильно рассеиваются веществом, в колонне микроскопа, где движутся электроны, должен быть вакуум. Здесь поддерживается давление, не превышающее одной миллиардной атмосферного.


Магнитное поле, создаваемое витками катушки, по которой проходит ток, действует как собирающая линза, фокусное расстояние которой можно изменять, изменяя ток. Витки провода, по которым проходит ток, фокусируют пучок электронов так же, как стеклянная линза фокусирует световой пучок. Электронное изображение формируется электрическими и магнитными полями примерно так же, как световое – оптическими линзами. Принцип действия магнитной линзы поясняется следующей схемой.


ОБЫЧНЫЙ ПРОСВЕЧИВАЮЩИЙ ЭЛЕКТРОННЫЙ МИКРОСКОП (ОПЭМ). 1 – источник электронов; 2 – ускоряющая система; 3 – диафрагма; 4 –конденсорная линза; 5 – образец; 6 – объективная линза; 7 – диафрагма; 8 – проекционная линза; 9 – экран или пленка; 10 – увеличенное изображение. Электроны ускоряются, а затем фокусируются магнитными линзами. Увеличенное изображение, создаваемое электронами, которые проходят через диафрагму объектива, преобразуется люминесцентным экраном в видимое или регистрируется на фотопластинке. Ряд конденсорных линз (показана лишь последняя) фокусирует электронный пучок на образце. Обычно первая из них создает не увеличенное изображение источника электронов, а последняя контролирует размер освещаемого участка на образце. Диафрагмой последней конденсорной линзы определяется ширина пучка в плоскости объекта. Образец Образец помещается в магнитном поле объектной линзы с большой оптической силой – самой важной линзы ОПЭМ, которой определяется предельное возможное разрешение прибора. Аберрации объективной линзы ограничиваются ее диафрагмой так же, как это происходит в фотоаппарате или световом микроскопе. Объектная линза дает увеличенное изображение объекта (обычно с увеличением порядка 100); дополнительное увеличение, вносимое промежуточными и проекционной линзами, лежит в пределах величин от несколько меньшей 10 до несколько большей Таким образом, увеличение, которое можно получить в современных ОПЭМ, составляет от менее 1000 до ~ (При увеличении в миллион раз грейпфрут вырастает до размеров Земли). Исследуемый объект обычно помещают на очень мелкую сетку, вкладываемую в специальный держатель. Держатель можно механическим или электрическим способом плавно перемещать вверх-вниз и вправо- влево.


Окончательное увеличенное электронное изображение преобразуется в видимое посредством люминесцентного экрана, который светится под действием электронной бомбардировки. Это изображение, обычно слабоконтрастное, как правило, рассматривают через бинокулярный световой микроскоп. При той же яркости такой микроскоп с увеличением 10 может создавать на сетчатке глаза изображение, в 10 раз более крупное, чем при наблюдении невооруженным глазом. Иногда для повышения яркости слабого изображения применяется люминофорный экран с электронно-оптическим преобразователем. В этом случае окончательное изображение может быть выведено на обычный телевизионный экран. Фотопластинка обычно позволяет получить более четкое изображение, чем наблюдаемое простым глазом или записанное на видеоленте, так как фотоматериалы, вообще говоря, более эффективно регистрируют электроны. Разрешение.Разрешение. Электронные пучки имеют свойства, аналогичные свойствам световых пучков. В частности, каждый электрон характеризуется определенной длиной волны. Разрешающая способность ЭМ определяется эффективной длиной волны электронов. Длина волны зависит от скорости электронов, а следовательно, от ускоряющего напряжения; чем больше ускоряющее напряжение, тем больше скорость электронов и тем меньше длина волны, а значит, выше разрешение. Столь значительное преимуществ о ЭМ в разрешающей способности объясняется тем, что длина волны электронов намного меньше длины волны света. Но поскольку электронные линзы не так хорошо фокусируют, как оптические (числовая апертура хорошей электронной линзы составляет всего лишь 0,09, тогда как для хорошего оптического объектива эта величина достигает 0,95), разрешение ЭМ равно 50–100 длинам волн электронов. Даже со столь слабыми линзами в электронном микроскопе можно получить предел разрешения ~0,17 нм, что позволяет различать отдельные атомы в кристаллах. Для достижения разрешения такого порядка необходима очень тщательная настройка прибора; в частности, требуются высокостабильные источники питания, а сам прибор (который может быть высотой ~2,5 м и иметь массу в несколько тонн) и его дополнительное оборудование требуют монтажа, исключающего вибрацию. В ОПЭМ можно получить увеличение до 1 млн. Предел пространственного (по x, y) разрешения - ~0,17 нм.


Растровая электронная микроскопия Растровый электронный микроскоп (РЭМ, англ. Scanning Electron Microscope, SEM) прибор, основанный на принципе взаимодействия электронного пучка с веществом, предназначенный для получения изображения поверхности объекта с высоким пространственным разрешением (несколько нанометров), а также о составе, строении и некоторых других свойствах приповерхностных слоёв. Пространственное разрешение сканирующего электронного микроскопа зависит от поперечного размера электронного пучка, который, в свою очередь зависит от электронно-оптической системы, фокусирующей пучок. В настоящее время современные модели РЭМ выпускаются рядом фирм мира, среди которых можно назвать: Carl Zeiss NTS GmbH Германия FEI Company США (слилась с Philips Electron Optics) FOCUS GmbH Германия Hitachi Япония JEOL Япония (Japan Electron Optics Laboratory) Tescan Чехия


1 – источник электронов; 2 – ускоряющая система; 3 – магнитная линза; 4 – отклоняющие катушки; 5 – образец; 6 – детектор отраженных электронов; 7 – кольцевой детектор; 8 – анализатор В РЭМ применяются электронные линзы для фокусировки электронного пучка (электронного зонда) в пятно очень малых размеров. Можно отрегулировать РЭМ так, чтобы диаметр пятна в нем не превышал 0,2 нм, но, как правило, он составляет единицы или десятки нанометров. Это пятно непрерывно обегает некоторый участок образца аналогично лучу, обегающему экран телевизионной трубки. Электрический сигнал, возникающий при бомбардировке объекта электронами пучка, используется для формирования изображения на экране телевизионного кинескопа или электронно-лучевой трубки (ЭЛТ), развертка которой синхронизирована с системой отклонения электронного пучка (рис.). Увеличение в данном случае понимается как отношение размера изображения на экране к размеру области, обегаемой пучком на образце. Это увеличение составляет от 10 до 10 млн. электронной колонной Электронные линзы (обычно сферические магнитные) и отклоняющие катушки образуют систему, называемую электронной колонной. Однако РЭМ-метод характеризуется рядом ограничений и недостатков, которые особенно сильно проявляются в субмикронном и нанометровом диапазонах измерений: недостаточно высокое пространственное разрешение; сложность получения трехмерных изображений поверхности, обусловленная в первую очередь тем, что высота рельефа в РЭМ определяется по эффективности упругого и неупругого рассеяния электронов и зависит от глубины проникновения первичных электронов в поверхностный слой; необходимость нанесения дополнительного токосъемного слоя на плохопроводящие поверхности для предотвращения эффектов, связанных с накоплением заряда; проведение измерений только в условиях вакуума; возможность повреждения изучаемой поверхности высокоэнергетичным сфокусированным пучком электронов.


Из-за очень узкого электронного луча РЭМ обладают очень большой глубиной резкости (мм), что на два порядка выше, чем у оптического микроскопа и позволяет получать четкие микрофотографии с характерным трехмерным эффектом для объектов со сложным рельефом. Это свойство РЭМ крайне полезно для понимания поверхностной структуры образца. Микрофотография пыльцы демонстрирует возможности РЭМ.


Сканирующие зондовые микроскопы Сканирующие зондовые микроскопы (СЗМ, англ. SPM Scanning Probe Microscope) класс микроскопов для измерения характеристик объекта с помощью различных типов зондов. Процесс построения изображения основан на сканировании поверхности зондом. В общем случае СЗМ позволяют получить трёхмерное изображение поверхности (топографию) с высоким разрешением. Основные типы сканирующих зондовых микроскопов: Сканирующий туннельный микроскоп Сканирующий туннельный микроскоп (СТМ, англ. STM scanning tunneling microscope) или растровый тунельный микроскоп (РТМ) - для получения изображения используется туннельный ток между зондом и образцом, что позволяет получить информацию о топографии и электрических свойствах образца. Сканирующий атомно-силовой микроскоп Сканирующий атомно-силовой микроскоп (АСМ) - регистрирует различные силы между зондом и образцом. Позволяет получить топографию поверхности и её механические свойства. Сканирующий ближнепольный оптический микроскоп Сканирующий ближнепольный оптический микроскоп (СБОМ) - для получения изображения используется эффект ближнего поля.


Отличительной СЗМ особенностью является наличие: зонда, системы перемещения зонда относительно образца по 2-м (X-Y) или 3-м (X-Y-Z) координатам, регистрирующей системы. При малом расстоянии между поверхностью и образцом действие сил взаимодействия (отталкивания, притяжения,и других сил) и проявление различных эффектов (например, туннелирование электронов) можно зафиксировать с помощью современных средств регистрации. Для регистрации используют различные типы сенсоров, чувствительность которых позволяет зафиксировать малые по величине возмущения. Работа сканирующего зондового микроскопа основана на взаимодействии поверхности образца с зондом (кантилевер - англ. балка, игла или оптический зонд). Кантилеверы разделяются на жёсткие и мягкие, - по длине балки, а характеризуется это резонансной частотой колебаний кантилевера. Процесс сканирования микрозондом поверхности может происходить как в атмосфере или заранее заданном газе, так и в вакууме, и даже сквозь плёнку жидкости. Кантилевер в сканирующем электронном микроскопе (увеличение 1000X) координатам,


Регистрирующая система фиксирует значение функции, зависящей от расстояния зонд- образец. Для получения полноценного растрового изображения используют различные устройства развертки по осям X и Y (например, пьезотрубки, плоскопараллельные сканеры). Сканирование поверхности может происходить двумя способами, - сканирование кантилевером и сканировение подложкой. Если в первом случае движения вдоль исследуемой поверхности совершает кантилевер, то во втором относительно неподвижного кантилевера движется сама подложка. обратной связи Для сохранения режима сканирования, - кантилевер должен находиться вблизи поверхности, - в зависимости от режима, - будь то режим постоянной силы, или постоянной высоты, существует система, которая могла бы сохранять такой режим во время процесса сканирования. Для этого в электронную схему микроскопа входит специальная система обратной связи, которая связана с системой отклонения кантилевера от первоначального положения. Основные технические сложности при создании сканирующего зондового микроскопа: Конец зонда должен иметь размеры сопоставимые с исследуемыми объектами. Обеспечение механической (в том числе тепловой и вибрационной) стабильности на уровне лучше 0,1 ангстрема. Детекторы должны надежно фиксировать малые по величине возмущения регистрируемого параметра. Создание прецизионной системы развёртки. Обеспечение плавного сближения зонда с поверхностью.


Сканирующий туннельный микроскоп (СТМ, англ. STM scanning tunneling microscope) или растровый тунельный микроскоп (РТМ) Сканирующий тунельный микроскоп в современном виде изобретен (принципы этого класса приборов были заложены ранее другими исследователями) Гердом Карлом Биннигом и Генрихом Рорером в 1981 году. За это изобретение они были удостоены Нобелевской премии по физике за 1986 год, которая была разделена между ними и изобретателем просвечивающего электронного микроскопа Э. Руска. В СТМ острая металлическая игла подводится к образцу на расстояние нескольких ангстрем. При подаче на иглу относительно образца небольшого потенциала возникает туннельный ток. Величина этого тока экспоненциально зависит от расстояния образец-игла. Типичные значения пА при расстояниях около 1 A. В этом микроскопе используется металлическое острие малого диаметра, являющееся источником электронов. В зазоре между острием и поверхностью образца создается электрическое поле. Число электронов, вытягиваемых полем из острия в единицу времени (ток туннелирования), зависит от расстояния между острием и поверхностью образца (на практике это расстояние меньше 1 нм). При перемещении острия вдоль поверхности ток модулируется. Это позволяет получить изображение, связанное с рельефом поверхности образца. Если острие заканчивается одиночным атомом, то можно сформировать изображение поверхности, проходя атом за атомом.


РТМ может работать только при условии, что расстояние от острия до поверхности постоянно, а острие можно перемещать с точностью до атомных размеров. Высокое разрешение СТМ вдоль нормали к поверхности (~0,01 нм) и в горизонтальном направлении (~0,1 нм), которое реализуется как в вакууме, так и с диэлектрическими средами в туннельном промежутке, открывает широкие перспективы повышения точности измерений линейных размеров в нанометровом диапазоне. Платиново - иридиумная игла сканирующего туннельного микроскопа крупным планом.


Сканирующий атомно-силовой микроскоп Сканирующий атомно-силовой микроскоп (АСМ) Атомно-силовая микроскопия поверхности (АСМ), предложенная в 1986 г., основана на эффекте силового взаимодействия между близко расположенными твердыми телами. В отличие от СТМ метод АСМ пригоден для проведения измерений как на проводящих, так и на непроводящих поверхностях не только в вакууме, но и на воздухе и в жидкой среде. Важнейшим элементом АСМ является микрозонд (кантилевер), на конце которого располагается диэлектрическое острие с радиусом кривизны R, к которому с помощью трехкоординатного манипулятора подводится поверхность исследуемого образца на расстояние d0,1÷10 нм. Острие кантилевера обычно закрепляют на пружине, изготовленной в виде кронштейна с малой механической жесткостью. В результате межатомного (межмолекулярного) взаимодействия между образцом и острием кантилевера кронштейн отклоняется. Разрешение АСМ вдоль нормали к поверхности сравнимо с соответствующим разрешением СТМ, а разрешение в горизонтальном направлении (продольное разрешение) зависит от расстояния d и радиуса кривизны острия R. Числовой расчет показывает, что при R=0,5 нм и d=0,4 нм продольное разрешение составляет ~1 нм. Необходимо подчеркнуть, что зондом АСМ является острие иглы, которое позволяет снимать информацию о профиле элемента рельефа поверхности, имеющего нанометровые размеры, но высота (глубина) такого элемента не должна превышать 100 нм, а соседний элемент должен быть расположен не ближе, чем на расстоянии 100 нм. При выполнении некоторых специфических для АСМ условий возможно восстановление профиля элемента без потери информации. Однако эти условия практически невозможно осуществить в эксперименте.



Вид Пространственное разрешение (x,y) Разрешение по z- координате Размер поля Увеличение Оптическая микроскопия 200 нм-0,4 -0,2 мм х Конфокальный микроскоп 200 нм 1 нм Интерферометрия в белом свете 200 нм 0,1 нм 0.05 до x Голографическая микроскопия 200 нм 0,1 нм 0.05 до x Просвечивающий электронный микроскоп 0,2 нм- до Растровый электронный микроскоп (РЭМ) 0,4 нм 0,1 нм 0,1-500 мкм по z - ~1-10 мм до х Сканирующие зондовые микроскопы 0,1 нм 0,05 нм ~150 х 150 мкм по z -



Оглавление темы "Электронная микроскопия. Мембрана.":









Электронные микроскопы появились в 1930-х годах и вошли в повсеместное употребление в 1950-х.

На рисунке изображен современный трансмиссионный (просвечивающий) электронный микроскоп , а на рисунке показан путь электронного пучка в этом микроскопе. В трансмиссионном электронном микроскопе электроны, прежде чем сформируется изображение, проходят сквозь образец. Такой электронный микроскоп был сконструирован первым.

Электронный микроскоп перевернут «вверх дном» по сравнению со световым микроскопом. Излучение подается на образец сверху, а изображение формируется внизу. Принцип действия электронного микроскопа в сущности тот же, что и светового микроскопа. Электронный пучок направляется конденсорными линзами на образец, а полученное изображение затем увеличивается с помощью других линз.

В таблице суммированы некоторые сходства и различия между световым и электронным микроскопами . В верхней части колонны электронного микроскопа находится источник электронов - вольфрамовая нить накала, сходная с той, какая имеется в обычной электрической лампочке. На нее подается высокое напряжение (например, 50 000 В), и нить накала излучает поток электронов. Электромагниты фокусируют электронный пучок.

Внутри колонны создается глубокий вакуум. Это необходимо для того, чтобы сократить до минимума рассеивание электронов из-за столкновения их с частицами воздуха. Для изучения в электронном микроскопе можно использовать только очень тонкие срезы или частицы, так как более крупными объектами электронный пучок почти полностью поглощается. Части объекта, отличающиеся относительно более высокой плотностью, поглощают электроны и потому на сформировавшемся изображении кажутся более темными. Для окрашивания образца с целью увеличения контраста используют тяжелые металлы, такие как свинец и уран.

Электроны невидимы для человеческого глаза, поэтому они направляются на флуоресцирующий , который воспроизводит видимое (черно-белое) изображение. Чтобы получить фотоснимок, экран убирают и направляют электроны непосредственно на фотопленку. Полученный в электронном микроскопе фотоснимок называется электронной микрофотографией.

Преимущество электронного микроскопа :
1) высокое разрешение (0,5 нм на практике)


Недостатки электронного микроскопа :
1) подготовленный к исследованию материал должен быть мертвым, так как в процессе наблюдения он находится в вакууме;
2) трудно быть уверенным, что объект воспроизводит живую клетку во всех ее деталях, поскольку фиксация и окрашивание исследуемого материала могут изменить или повредить ее структуру;
3) дорого стоит и сам электронный микроскоп и его обслуживание;
4) подготовка материала для работы с микроскопом отнимает много времени и требует высокой квалификации персонала;
5) исследуемые образцы под действием пучка электронов постепенно разрушаются. Поэтому, если требуется детальное изучение образца, необходимо его фотографировать.

Электронная микроскопия - это метод исследования структур, находящихся вне пределов видимости светового микроскопа и имеющих размеры менее одного микрона (от 1 мк до 1-5 Å).

Действие электронного микроскопа (рис.) основано на использовании направленного потока , который выполняет роль светового луча в световом микроскопе, а роль линз играют магниты (магнитные линзы).

Вследствие того, что различные участки исследуемого объекта по-разному задерживают электроны, на экране электронного микроскопа получается черно-белое изображение изучаемого объекта, увеличенное в десятки и сотни тысяч раз. В биологии и медицине в основном используются электронные микроскопы просвечивающего типа.

Электронная микроскопия возникла в 30-х годах, когда были получены первые изображения некоторых вирусов (вируса табачной мозаики и бактериофагов). В настоящее время электронная микроскопия нашла наиболее широкое применение в , и вирусологии, обусловив создание новых отраслей науки. При электронной микроскопии биологических объектов применяют специальные методы приготовления препаратов. Это необходимо для выявления отдельных компонентов изучаемых объектов (клетки, бактерии, вируса и т. д.), а также для сохранения их структуры в условиях высокого вакуума под пучком электронов. При помощи электронной микроскопии изучается внешняя форма объекта, молекулярная организация его поверхности, с помощью метода ультратонких срезов исследуется внутреннее строение объекта.

Электронная микроскопия в сочетании с биохимическими, цитохимическими методами исследования, иммунофлюоресценцией, а также рентгеноструктурным анализом позволяют судить о составе и функции структурных элементов клеток и вирусов.

Электронный микроскоп 70-х годов прошлого века

Электронная микроскопия - изучение микроскопических объектов при помощи электронного микроскопа.

Электронный микроскоп представляет электронно-оптический инструмент, обладающий разрешающей способностью в несколько ангстрем и позволяющий визуально изучать тонкое строение микроскопических структур и даже некоторых молекул.

В качестве источника электронов для создания электронного пучка, заменяющего световой пучок, служит трехэлектродная пушка, состоящая из катода, управляющего электрода и анода (рис. 1).


Рис. 1. Трехэлектродная пушка: 1 - катод; 2 - управляющий электрод; 3 - пучок электронов; 4 - анод.

Электромагнитные линзы, применяемые в электронном микроскопе вместо оптических, представляют многослойные соленоиды, заключенные в панцири из магнитно-мягкого материала, имеющие на внутренней стороне немагнитный зазор (рис. 2).


Рис. 2. Электромагнитная линза: 1 - полюсной наконечник; 2 - латунное кольцо; 3 - обмотка; 4 - панцирь.

Электрические и магнитные поля, создаваемые в электронном микроскопе, являются аксиально симметричными. Благодаря действию этих полей заряженные частицы (электроны), выходящие из одной точки объекта в пределах небольшого угла, вновь собираются в плоскости изображения. Вся электронно-оптическая система заключена в колонне электронного микроскопа (рис. 3).

Рис. 3. Электронно-оптическая система: 1 - управляющий электрод; 2 - диафрагма первого конденсатора; 3 - диафрагма второго конденсатора; 4 - стигматор второго конденсатора; 5 - объект; 6 - линза объектива; 7 - стигматор линзы объектива; 8 - стигматор промежуточной линзы; 9 - диафрагма проекционной линзы; 10 - катод; 11 - анод; 12 - первый конденсатор; 13 - второй конденсатор; 14 - корректор фокусировки; 15 - столик объектодержателя; 16 - диафрагма линзы объектива; 17 - селекторная диафрагма; 18 - промежуточная линза; 19 - проекционная линза; 20 - экран.

Созданный электронной пушкой пучок электронов направляется в поле действия конденсорных линз, которые позволяют в широких пределах изменять плотность, диаметр и апертуру пучка, падающего на исследуемый объект. В камере объекта установлен столик, конструкция которого обеспечивает перемещение объекта во взаимно перпендикулярных направлениях. При этом можно последовательно осмотреть площадь, равную 4 мм 2 , и выбрать наиболее интересные участки.

За камерой объекта расположена линза объектива, которая позволяет достигать резкого изображения объекта. Она же дает первое увеличенное изображение объекта, и с помощью последующих, промежуточной и проекционной, линз общее увеличение можно довести до максимального. Изображение объекта возникает на экране, люминесцирующем под действием электронов. За экраном расположены фотопластины. Стабильность действия электронной пушки, а также четкость изображения наряду с другими факторами (постоянство высокого напряжения и др.) во многом зависят от глубины разрежения в колонне электронного микроскопа, поэтому качество работы прибора в значительной степени определяется вакуумной системой (насосы, каналы откачки, краны, клапаны, уплотнения) (рис. 4). Необходимое разрежение внутри колонны достигается благодаря высокой эффективности вакуумных насосов.

Предварительное разрежение во всей вакуумной системе создает механический форвакуумный насос, затем вступает в действие масляный диффузионный насос; оба насоса включены последовательно и обеспечивают в колонне микроскопа высокое разрежение. Введение в систему электронного микроскопа масляного бустерного насоса позволило на длительное время отключать форвакуумный насос.


Рис. 4. Вакуумная схема электронного микроскопа: 1 - ловушка, охлаждаемая жидким азотом (хладопровод); 2 - высоковакуумный кран; 3 - диффузионный насос; 4 - обходной клапан; 5 - малый буферный баллон; 6 - бустерный насос; 7 - механический форвакуумный насос предварительного разрежения; 8 - четырехходовой клапанный кран; 9 - большой буферный баллон; 10 - колонна электронного микроскопа; 11 - клапан напуска воздуха в колонну микроскопа.

Электрическая схема микроскопа состоит из источников высокого напряжения, накала катода, питания электромагнитных линз, а также системы, обеспечивающей переменным сетевым напряжением электродвигатель форвакуумного насоса, печь диффузионного насоса и освещение пульта управления. К питающему устройству предъявляются очень высокие требования: например, для высокоразрешающего электронного микроскопа степень нестабильности высокого напряжения не должна превышать 5·10 -6 за 30 сек.

Интенсивный электронный пучок образуется в результате термоэмиссии. Источником накала катода, который представляет собой V-образную вольфрамовую нить, служит высокочастотный генератор. Генерируемое напряжение с частотой колебаний 100-200 кГц обеспечивает получение монохроматического электронного пучка. Питание линз электронного микроскопа обеспечивается постоянным высокостабилизированным током.


Рис. 5. Электронный микроскоп УЭМВ-100Б для исследования живых микроорганизмов.

Выпускаются приборы (рис. 5) с гарантированной разрешающей способностью 4,5 Å; на отдельных уникальных снимках получено разрешение 1,27 Å, приближающееся к размеру атома. Полезное увеличение при этом равно 200 000.

Электронный микроскоп - прецезионный прибор, который требует особых методов приготовления препаратов. Биологические объекты малоконтрастны, поэтому приходится искусственно усиливать контраст препарата. Имеется несколько способов повышения контрастности препаратов. При оттенении препарата под углом платиной, вольфрамом, углеродом и т. д. становится возможным определять на электронномикроскопических снимках размеры по всем трем осям пространственной системы координат. При позитивном контрастировании препарат соединяется с водорастворимыми солями тяжелых металлов (уранилацетат, моноокись свинца, перманганат калия и др.). При негативном контрастировании препарат окружают тонким слоем аморфного вещества высокой плотности, непроницаемого для электронов (молибденовокислый аммоний, уранилацетат, фосфорно-вольфрамовая кислота и др.).

Электронная микроскопия вирусов (вирусоскопия) обусловила значительный прогресс в изучении ультратонкой, субмолекулярной структуры вирусов (см.). Наряду с физическими, биохимическими и генетическими методами исследования применение электронной микроскопии способствовало также возникновению и развитию молекулярной биологии. Предметом изучения этого нового раздела биологии является субмикроскопическая организация и функционирование клеток человека, животных, растений, бактерий и микоплазм, а также организация риккетсий и вирусов (рис. 6). Вирусы, крупные молекулы белка и нуклеиновых кислот (РНК, ДНК), отдельные фрагменты клеток (например, молекулярное строение оболочки бактериальных клеток) можно исследовать при помощи электронного микроскопа после специальной обработки: оттенения металлом, позитивного или негативного контрастирования уранилацетатом или фосфорно-вольфрамовой кислотой, а также другими соединениями (рис. 7).

Рис. 6. Клетка культуры ткани сердца обезьяны циномольгус, инфицированная вирусом натуральной оспы (X 12 000): 1 - ядро; 2 - митохондрии; 3 - цитоплазма; 4 - вирус.
Рис. 7. Вирус гриппа (негативное контрастирование (Х450 000): 1 - оболочка; 2 - рибонуклеопротеид.

Методом негативного контрастирования на поверхности многих вирусов были обнаружены закономерно расположенные группы белковых молекул - капсомеры (рис. 8).

Рис. 8. Фрагмент поверхности капсида вируса герпеса. Видны отдельные капсомеры (X500 000): 1 - вид сбоку; 2 - вид сверху.
Рис. 9. Ультратонкий срез бактерии Salmonella typhimurium (Х80 000): 1 - ядро; 2 - оболочка; 3 - цитоплазма.

Внутреннее строение бактерий и вирусов, а также других более крупных биологических объектов можно изучать только после рассечения их при помощи ультратома и приготовления тончайших срезов толщиной 100-300 Å. (рис. 9). Благодаря улучшению методов фиксации, заливки и полимеризации биологических объектов, применению алмазных и стеклянных ножей при ультратомировании, а также использованию высококонтрастирующих соединений для окрашивания серийных срезов удалось получить ультратонкие срезы не только крупных, но и самых мелких вирусов человека, животных, растений и бактерий.

Электр о нный микроск о п (англ. - electron microscope)этоприбор для наблюдения и фотографирования многократно (до 1·10 6 раз) увеличенного изображения объектов, в котором вместо световых лучей используются пучки электронов, ускоренных до больших энергий (30 - 100 кэВ и более) в условиях глубокого вакуума.

Просвечивающий электронный микроскоп (ПЭМ) обладают самой высокой разрешающей способностью, превосходя по этому параметру световые микроскопы в несколько тысяч раз. Так называемый предел разрешения, характеризующий способность прибора отобразить раздельно мелкие максимально близко расположенные детали объекта, у ПЭМ составляет 2 - 3 A°. При благоприятных условиях можно сфотографировать отдельные тяжёлые атомы. При фотографировании периодических структур, таких как атомные плоскости решёток кристаллов, удаётся реализовать разрешение менее 1 A°.

Для определения структуры твердых тел необходимо использование излучения с длиной волны λ, меньшей, чем межатомные расстояния. В электронном микроскопе с этой целью используют электронные волны.

Длина волны де Бройля λ B для электрона, движущегося со скоростью V

где p – его импульс, h - постоянная Планка, m 0 - масса покоя электрона, V – его скорость.

После простых преобразований получаем, что длина волны де Бройля для электрона, движущегося в ускоряющем однородном электрическом поле с разностью потенциалов U , равна

. (1)

В выражениях для λ Б не учитывается релятивистская поправка, существенная лишь при больших скоростях электронов V >1·10 5 В.

Величина λ Б очень мала что позволяет обеспечивать высокую разрешающую способность электронного микроскопа.

Для электронов же с энергиями от 1 эВ до 10 000 эВ длина волны де Бройля лежит в пределах от ~1 нм до 10 −2 нм, то есть в интервале длин волн рентгеновского излучения . Поэтому волновые свойства электронов должны проявляться, например, при их рассеянии на тех же кристаллах, на которых наблюдается дифракция рентгеновских лучей. [

Современные микроскопы имеют разрешающую способность в (0.1 – 1) нм при энергии электронов (1·10 4 – 1·10 5) эВ, что делает возможным наблюдение групп атомов и даже отдельных атомов, точечных дефектов, рельефа поверхности и т.д.

Просвечивающая электронная микроскопия

В электронно-оптическую систему просвечивающего электронного микроскопа (ПЭМ) входят: электронная пушка И и конденсор 1, предназначенные для обеспечения осветительной системы микроскопа; объективная 2, промежуточная 3 и проекционная 4 линзы, осуществляющие отображение; камера наблюдения и фотографирования Э (рис.1).

Рис.1. Ход лучей в ПЭМ в режиме наблюдения изображения

сточником электронов в электронной пушке служит вольфрамовый термоэмиссионный катод. Конденсорная линза позволяет получить на объекте пятно диаметром в несколько мкм. С помощью отображающей системы на экране ПЭМ формируется электронно-микроскопическое изображение объекта.

В плоскости, сопряженной с объектом, объективная линза формирует первое промежуточное изображение объекта. Все электроны, исходящие из одной точки объекта, попадают в одну точку сопряженной плоскости. Затем с помощью промежуточной и проекционной линз получают изображение на флуоресцирующем экране микроскопа или фотопластине. Это изображение передает структурные и морфологические особенности образца.

В ПЭМ используют магнитные линзы. Линза состоит из обмотки, ярма и полюсного наконечника, концентрирующего магнитное поле в малом объеме и повышающего тем самым оптическую силу линзы.

ПЭМ обладают самой высокой разрешающей способностью (PC), превосходя по этому параметру световые микроскопы в несколько тысяч раз. Так называемый предел разрешения, характеризующий способность прибора отобразить раздельно мелкие максимально близко расположенные детали объекта, у ПЭМ составляет 2 – 3 A°. При благоприятных условиях можно сфотографировать отдельные тяжёлые атомы.При фотографировании периодических структур, таких как атомные плоскости решёток кристаллов, удаётся реализовать разрешение менее 1 A°. Столь высокие разрешения достигаются благодаря чрезвычайно малой длине волны де Бройля электронов. Оптимальным диафрагмированием удаётся снизить сферическую аберрацию объектива, влияющую на PC ПЭМ, при достаточно малой дифракционной ошибке. Эффективных методов коррекции аберраций в не найдено. Поэтому в ПЭМ магнитныеэлектронные линзы(ЭЛ), обладающие меньшими аберрациями, полностью вытеснили электростатические ЭЛ. Выпускаются ПЭМ различного назначения. Их можно разделить на 3 группы:

    упрощённые ПЭМ,

    ПЭМ высокого разрешения,

    ПЭМ с повышенным ускоряющим напряжением.

1. Упрощённые ПЭМ предназначены для исследований, в которых не требуется высокая PC. Они более просты по конструкции (включающей 1 конденсор и 2 – 3 линзы для увеличения изображения объекта), их отличают меньшее (обычно 60 – 80 кВ) ускоряющее напряжение и более низкая его стабильность. PC этих приборов – от 6 до 15. Другие применения - предварительный просмотр объектов, рутинные исследования, учебные цели. Толщина объекта, которую можно «просветить» электронным пучком, зависит от ускоряющего напряжения. В ПЭМ с ускоряющим напряжением 100 кВ изучают объекты толщиной от 10 до нескольких тыс. A°.

2. ПЭМ с высокой разрешающей способностью (2 – 3 Å) – как правило, универсальные приборы многоцелевого назначения (рис.2, а). С помощью дополнительных устройств и приставок в них можно наклонять объект в разных плоскостях на большие углы к оптической оси, нагревать, охлаждать, деформировать его, осуществлять рентгеновский структурный анализ, исследования методами электронографии и пр. Ускоряющее электроны напряжение достигает 100 – 125 кВ, регулируется ступенчато и отличается высокой стабильностью: за 1 – 3 мин оно изменяется не более чем на 1 – 2 миллионные доли от исходного значения. В его оптической системе (колонне) создаётся глубокий вакуум (давление до 1·10 -6 мм рт. ст.). Схема оптической системы ПЭМ – на рис.2, б. Пучок электронов, источником которых служит термокатод, формируется в электронной пушке и затем дважды фокусируется первым и вторым конденсорами, создающими на объекте электронное «пятно», диаметр которого пятна можно изменять от 1 до 20 мкм. После прохождения сквозь объект часть электронов рассеивается и задерживается апертурной диафрагмой. Не рассеянные электроны проходят через отверстие диафрагмы и фокусируются объективом в предметной плоскости промежуточной линзы. Здесь формируется первое увеличенное изображение. Последующие линзы создают второе, третье и т. д. изображения. Последняя линза формирует изображение на флуоресцирующем экране, который светится под воздействием электронов

Рис. 2 а. ПЭМ: 1 – электронная пушка; 2 – конденсорные линзы; 3 – объектив; 4 – проекционные линзы; 5 – световой микроскоп, дополнительно увеличивающий изображение, наблюдаемое на экране: 6 – тубус со смотровыми окнами, через которые можно наблюдать изображение; 7 – вы-соковольтный кабель; 8 – ваку-умная система; 9 – пульт управ-ления; 10 – стенд; 11 – высоко-вольтный источник питания; 12 – источник питания линз.

Рис. 2 б. Оптическая схема ПЭМ. 1 – катод V-образной формы из вольф-рамовой проволоки (разогревается проходящим по нему током до 2800 К); 2 – фокусирующий цилиндр; 3 – анод; 4 – первый (короткофокусный) конденсор, создающий уменьшенное изображение источника электронов; 5 – второй (длиннофокусный) кон-денсор, который переносит умень-шенное изображение источника элек-тронов на объект; 6 – объект; 7 – апертурная диафрагма; 8 – объектив; 9, 10, 11 – система проекционных линз; 12 – катодолюминесцентный экран, на котором формируется конечное изображение.

Увеличение ПЭМ равно произведению увеличений всех линз. Степень и характер рассеяния электронов неодинаковы в различных точках объекта, так как толщина, плотность и химический состав объекта меняются от точки к точке. Соответственно изменяется число электронов, задержанных апертурной диафрагмой после прохождения различных точек объекта, а следовательно, и плотность тока на изображении, которая преобразуется в световой контраст на экране. Под экраном располагается магазин с фотопластинками. При фотографировании экран убирается, и электроны воздействуют на фотоэмульсионный слой. Изображение фокусируется изменением тока, возбуждающего магнитное поле объектива. Токи других линз регулируют для изменения увеличения ПЭМ.

3. ПЭМ с повышенным ускоряющим напряжением (до 200 кВ) предназначены для исследования более толстых объектов (в 2 – 3 раза толще), чем обычные ПЭМ. Их разрешающая способность достигает 3 – 5 Å. Эти приборы отличаются конструкцией электронной пушки: в ней для обеспечения электрической прочности и стабильности имеются два анода, на один из которых подаётся промежуточный потенциал, составляющий половину ускоряющего напряжения. Магнитодвижущая сила линз больше, чем в ПЭМ с ускоряющим напряжением 100 кВ, а сами линзы имеют увеличенные габариты и вес.

4. Сверхвысоковольтные электронные микроскопы (СВЭМ) – крупногабаритные приборы (рис.3) высотой от 5 до 15 м, с ускоряющим напряжением 0,50 – 0,65; 1 – 1,5 и 3.5 МВ.

Для них строят специальные помещения. СВЭМ предназначены для исследования объектов толщиной от 1·до·10 мкм. Электроны ускоряются в электростатическом ускорителе (так называемом ускорителе прямого действия), расположенном в баке, заполненном электроизоляционным газом под давлением. В том же или в дополнительном баке находится высоковольтный стабилизированный источник питания. В перспективе – созданию ПЭМ с линейным ускорителем, в котором электроны ускоряются до энергий 5 – 10 МэВ. При изучении тонких объектов PC СВЭМ ниже, чем у ПЭМ. В случае толстых объектов PC СВЭМ в 10 – 20 раз превосходит PC ПЭМ с ускоряющим напряжением 100 кВ. Если же образец аморфный, то контраст электронного изображения определяется толщиной и коэффициентом поглощения материала образца, что наблюдается, например, при изучении морфологии поверхности с помощью пластиковых или углеродных реплик. В кристаллах, кроме того, имеет место дифракция электронов, что позволяет определять структуру кристалла.

В

Рис.4. Положение диафрагмы Д при светлопольном (а ) и темнопольном (б ) изображениях: П - прошедший луч; D - дифрагированный луч; Обр - образец; И - электронная пушка

ПЭМ можно реализовать следующие режимы работы:

    изображение формируется прошедшим пучком П, дифрагированный пучок D отсекается апертурной диафрагмой Д (рис.4, а ), это - светлопольное изображение;

    апертурная диафрагма Д пропускает дифрагированный D пучок, отсекая прошедший П, это - темнопольное изображение (рис.4, б );

    для получения дифракционной картины задняя фокальная плоскость объективной линзы фокусируется на экране микроскопа (рис.4). Тогда на экране наблюдается дифракционная картина от просвечиваемого участка образца.

Для наблюдения изображения в задней фокальной плоскости объектива устанавливается апертурная диафрагма, в результате уменьшается апертура лучей, формирующих изображение, и повышается разрешение. Эта же диафрагма используется для выбора режима наблюдения (см. рис.2 и 5).

Рис.5. Ход лучей в ПЭМ в режиме микродифракции Д - диафрагма; И - источник электронов; Обр - образец; Э – экран; 1 - конденсорная, 2 - объективная, 3 - промежуточная, 4 -проекционная линзы

лина волны при напряжениях, используемых в ПЭМ, составляет около порядка 1∙10 –3 нм, то есть много меньше постоянной решетки кристаллов а , поэтому дифрагированный луч может распространяться лишь под малыми углами θ к проходящему лучу (
). Дифракционная картина от кристалла представляет собой набор отдельных точек (рефлексов). В ПЭМ в отличие от электронографа можно получить дифракционную картину с малого участка объекта, используя диафрагму в плоскости, сопряженной с объектом. Размер области может составлять около (1×1) мкм 2 . От режима наблюдения изображения к режиму дифракции можно переходить, изменяя оптическую силу промежуточной линзы.