Принцип экологической пирамиды. Пирамида численности. Для построения пирамиды численности подсчитывают число организмов на некоторой территории, группируя их по трофическим уровням

Трофическую структуру экосистемы можно изобразить графически в виде экологической пирамиды, в основании которой лежит первый уровень. Эти пирамиды отражают законы расходования биомассы и энергии в пищевых цепях. Численное значение каждой ступени такой пирамиды может быть выражено числом особей, их биомассой или накопленной в ней энергией.

Пищевые сети, возникающие в экосистеме, имеют структуру, для которой характерно определенное число организмов на каждом трофическом уровне. Замечено, что число организмов прямо пропорционально уменьшается при переходе с одного трофического уровня на другой . Такая закономерность получила название «правило экологической пирамиды». В данном случае рассмотрена пирамида чисел . Она может нарушаться, если мелкие хищники живут благодаря групповой охоте на крупных животных.

Для каждого трофического уровня характерна своя биомасса - суммарная масса организмов какой-либо группы . В пищевых цепях биомасса организмов на разных трофических уровнях различна: биомасса продуцентов (первый трофический уровень) значительно выше, чем биомасса консументов - растительноядных животных (второй трофический уровень). Биомасса каждого из последующих трофических уровней пищевой цепи также прогрессивно уменьшается. Эта закономерность получила название пирамиды биомасс .

Аналогичную закономерность можно выявить при рассмотрении передачи энергии по трофическим уровням, то есть в пирамиде энергии (продукции ) . Количество энергии, расходуемой на поддержание собственной жизнедеятельности, в цепи трофических уровней растет, а продуктивность падает. Растения усваивают в процессе фотосинтеза лишь незначительную часть солнечной энергии. Растительноядные животные, составляющие второй трофический уровень, усваивают лишь некоторую часть (20-60 %) от поглощенного корма. Усвоенная пища идет на поддержание процессов жизнедеятельности организмов животных и рост (например, на построение тканей, запасы в виде отложения жиров).

Организмы третьего трофического уровня (хищные животные) при поедании растительноядных животных вновь теряют большую часть заключенной в пище энергии. Количество энергии на последующих трофических уровнях вновь прогрессивно уменьшается. Результатом этих потерь энергии является небольшое число (три-пять) трофических уровней в пищевой цепи.

Потерянная в цепях питания энергия может быть восполнена только поступлением новых ее порций. Поэтому в экосистеме не может быть круговорота энергии, аналогично круговороту веществ. Экосистемы являются открытыми системами, нуждающимися в притоке солнечной энергии или готовых запасов органического вещества, т.о. передача энергии в экосистемах происходит согласно известным законам термодинамики:


1. Энергия может переходить из одной формы в другую, но никогда не создаётся вновь и не исчезает.

2. Не может быть ни одного процесса, связанного с превращением энергии, без потери некоторой её части в виде тепла, т.е. нет преобразований энергии со 100% эффективностью.

Подсчитано, что с одного трофического уровня на другой передается лишь около 10% энергии . Эта закономерность получила название "правило десяти процентов".

Таким образом, большая часть энергии в цепи питания при переходе с одного уровня на другой теряется. К следующему звену в цепи питания поступает только та энергия, которая заключена в массе предыдущего поедаемого звена. Потери энергии составляют около 90% при каждом переходе через трофическую цепь. Например, если энергия растительного организма составляет 1000 Дж, то при полном поедании его травоядным животным в теле последнего ассимилируется всего 100 Дж, в теле хищника 10 Дж, а если этот хищник будет съеден другим, то в его теле ассимилируется только 1 Дж энергии, то есть 0,1%.

В результате энергия, накопленная зелеными растениями в цепях питания, стремительно иссякает. Поэтому пищевая цепь не может включать более 4 – 5 звеньев. Потерянная в цепях питания энергия может быть восполнена только за счет поступления новых ее порций. В экосистемах не может быть круговорота энергии, подобно круговороту веществ. Жизнь и функционирование любой экологической системы возможны только при односторонне направленном потоке энергии в виде солнечного излучения или при притоке запасов готового органического вещества.

Таким образом, пирамида чисел отражает число особей в каждом звене пищевой цепи. Пирамида биомасс отражает количество образованного на каждом звене органического вещества – его биомассу. Пирамида энергии показывает количество энергии на каждом трофическом уровне.

Снижение количества доступной энергии на каждом последующем трофическом уровне сопровождается снижением биомассы и численности особей. Пирамиды биомассы и численности организмов для данного биоценоза повторяют в общих чертах конфигурацию пирамиды продуктивности.

Графически экологическую пирамиду изображают в виде нескольких прямоугольников одинаковой высоты, но разной длины. Длина прямоугольника уменьшается от нижнего к верхнему соответственно уменьшению продуктивности на последующих трофических уровнях. Нижний треугольник самый большой по длине и соответствует первому трофическому уровню - продуцентам, второй - приблизительно в 10 раз меньше и соответствует второму трофическому уровню – растительноядным животным, потребителям первого порядка и т.д.

Все три правила пирамиды – продуктивности, биомассы и численности выражают энергетические отношения в экосистемах. При этом пирамида продуктивности имеет универсальный характер, а пирамиды биомассы и численности проявляются в сообществах с определенной трофической структурой.

Знание законов продуктивности экосистем, возможность количественного учета потока энергии имеют важное практическое значение. Первичная продукция агроценозов и эксплуатация человеком природных сообществ – основной источник пищи для человека. Важное значение имеет и вторичная продукция биоценозов, получаемая за счет промышленных и сельскохозяйственных животных, как источник животного белка. Знание законов распределения энергии, потоков энергии и вещества в биоценозах, закономерностей продуктивности растений и животных, понимание пределов допустимого изъятия растительной и животной биомассы из природных систем позволяют правильно строить отношения в системе «общество - природа».

Экологические пирамиды

Функциональные взаимосвязи, т. е. трофическую структуру, можно изобразить графически, в виде так называемых экологических пирамид. Основанием пирамиды служит уровень продуцентов, а последующие уровни питания образуют этажи и вершину пирамиды. Известны три основных типа экологических пирамид: 1) пирамида чисел , отражающая численность организмов на каждом уровне (пирамида Элтона); 2) пирамида биомассы , характеризующая массу живого вещества, - общий сухой вес, калорийность и т. д.; 3) пирамида продукции (или энергии), имеющая универсальный характер, показывающая изменение первичной продукции (или энергии) на последовательных трофических уровнях.

Пирамида чисел отображает отчетливую закономерность, обнаруженную Элтоном: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается (рис. 5.). В основе этой закономерности лежит, во-первых, тот факт, что для уравновешивания массы большого тела необходимо много маленьких тел; во-вторых, от низших трофических уровней к высшим теряется количество энергии (от каждого уровня до предьщущего доходитлишь 10% энергии) и, в-третьих - обратная зависимость метаболизма от размера особей (чем мельче организм, тем интенсивнее обмен веществ, тем выше скорость роста их численности и биомассы).

Рис. 5. Упрощенная схема пирамиды Элтона

Однако пирамиды численности будут сильно различаться по форме в разных экосистемах, поэтому численность лучше приводить в табличной форме, а вот - биомассу - в графиче­ской. Она четко указывает на количество всего живого вещест­ва на данном трофическом уровне, например, в единицах массы на единицу площади - г/м 2 или на объем - г/м 3 и т. д.

В наземных экосистемах действует следующее правило пирамиды биомасс : суммарная масса растений превышает массу всех травоядных, а их масса превышает всю биомассу хищников. Это правило соблюдается, и биомасса всей цепочки изменяется с изменениями величины чистой продукции, отношение годового прироста которой к биомассе экосистемы невелико и колеблется в лесах разных географических зон от 2 до 6%. И только в луговых растительных сообществах она может достигать 40-55%, а в отдельных случаях, в полупустынях - 70-75 %. На рис. 6 показаны пирамиды биомасс некоторых биоценозов. Как видно из рисунка, для океана приведенное выше правило пирамиды биомасс недействительно - она имеет перевернутый (обращенный) вид.

Рис. 6. Пирамиды биомассы некоторых биоценозов: П - продуценты; РК - растительноядные консументы; ПК - плотоядные консументы; Ф – фитопланктон; З - зоопланктон

Для экосистемы океана характерна тенденция накапливания биомассы на высоких уровнях, у хищников. Хищники живут долго и скорость оборота их генераций мала, но у продуцентов - у фитопланктонных водорослей, оборачиваемость может в сотни раз превышать запас биомассы. Это значит, что их чистая продукция и здесь превышает продукцию, поглощенную консументами, т. е. через уровень продуцентов проходит больше энергии, чем через всех консументов.

Отсюда понятно, что еще более совершенным отражением влияния трофических отношений на экосистему должно быть правило пирамиды продукции (или энергии): на каждом предыдущем трофическом уровне количество биомассы, создаваемой за единицу времени (или энергии), больше, чем на последующем.

Трофические или пищевые цепи могут быть представлены в форме пирамиды. Численное значение каждой ступени такой пирамиды может быть выражены числом особей, их биомассой или накопленной в ней энергией.

В соответствии с законом пирамиды энергий Р.Линдемана и правила десяти процентов , с каждой ступени на последующую ступень переходит приблизительно 10 % (от 7 до 17 %) энергии или вещества в энергетическом выражении (рис.7). Заметим, что на каждом последующем уровне при снижении количества энергии ее качество возрастает, т.е. способность совершать работу единицы биомассы животного в соответствующее число раз выше, чем такой же биомассы растений.

Ярким примером является трофическая цепь открытого моря, представленная планктоном и китами. Масса планктона рассеяна в океанической воде и, при биопродуктивности открытого моря менее 0,5 г/м 2 сут -1 , количество потенциальной энергии в кубическом метре океанической воды бесконечно мало в сравнении с энергией кита, масса которого может достигать нескольких сотен тонн. Как известно, китовый жир - это высококалорийный продукт, который использовали даже для освещения.

В соответствии с последней цифрой сформулировано правило одного процента : для стабильности биосферы в целом доля возможного конечного потребления чистой первичной продукции в энергетическом выражении не должно превышать 1%.


Рис.7. Пиpамида пеpедачи энеpгии по пищевой цепи (по Ю.Одуму)

В деструкции органики тоже наблюдается соответствующая последовательность: так около 90 % энергии чистой первичной продукции освобождают микроорганизмы и грибы, менее 10 % - беспозвоночные животные и менее 1 % - позвоночные животные, являющиеся конечными косументами.

В конечном итоге все три правила пирамид отражают энер-гетические~отношения в экосистеме, а пирамида продукции (энергии) имеет универсальный характер.

В природе, в стабильных системах биомасса изменяется незначительно, т. е. природа стремится использовать полностью валовую продукцию. Знание энергетики экосистемы и количественные ее показатели позволяют точно учесть возможность изъятия из природной экосистемы того или иного количества растительной и животной биомасссы без подрыва ее продуктивности.

Человек получает достаточно много продукции от природных систем, тем не менее основным источником пищи для него является сельское хозяйство. Создав агроэкосистемы, человек стремится получить как можно больше чистой продукции растительности, но ему необходимо тратить половину растительной массы на выкармливание травоядных животных, птиц и т. д., значительная часть продукции идет в промышленность и теряется в отбросах, т. е. и здесь теряется около 90% чистой продукции и только около 10% непосредственно используется на потребление человеком.

В природных экосистемах энергетические потоки также изменяются по своей интенсивности и характеру, но этот процесс регулируется действием экологических факторов, что проявляется в динамике экосистемы в целом.

Опираясь на пищевую цепь, как основу функционирования экосистемы, можно также объяснить случаи накопления в тканях некоторых веществ (например синтетических ядов), которые по мере их движения по трофической цепи не участвуют в нормальном обмене веществ организмов. Согласно правила биологического усиления происходит примерно десятикратное увеличение концентрации загрязнителя при переходе на более высокий уровень экологической пирамиды. В частности, казалось бы незначительное повышенное содержания радионуклидов в речной воде на первом уровне трофической цепи осваивается микpооpганизмами и планктоном, затем концентpиpуется в тканях pыб и достигает максимальных значений у чаек. Их яйца имеют уровень радионуклидов в 5000 pаз больший по сравнению с фоновым загрязнением.

Виды экосистем:

Существует несколько классификаций экосистем. Во-первых экосистемы подразделяются по характеру происхождения и делятся на природные (болото, луг) и искусственные (пашня, сад, космический корабль).

По размерам экосистемы подразделяются на:

1. микроэкосистемы (например, ствол упавшего дерева или поляна в лесу)

2. мезоэкосистемы (лесной массив или степной колок)

3. макроэкосистемы (тайга, море)

4. экосистемы глобального уровня (планеты Земля)

Энергия – наиболее удобная основа для классификации экосистем. Различают четыре фундаментальных типа экосистем по типу источника энергии:

  1. движимые Солнцем, малосубсидируемые
  2. движимые Солнцем, субсидируемые другими естественными источниками
  3. движимые Солнцем и субсидируемые человеком
  4. движимые топливом.

В большинстве случаев могут использоваться и два источника энергии - Солнце и топливо.

Природные экосистемы, движимые Солнцем, малосубсидируемые - это открытые океаны, высокогорные леса. Все они получают энергию практически только от одного источника - Солнца и имеют низкую продуктивность. Ежегодное потребление энергии оценивается ориентировочно в 10 3 -10 4 ккал-м 2 . Организмы, живущие в этих экосистемах, адаптированы к скудному количеству энергии и других ресурсов и эффективно их используют. Эти экосистемы очень важны для биосферы, так как занимают огромные площади. Океан покрывает около 70 % поверхности земного шара. По сути дела, это основные системы жизнеобеспечения, механизмы, стабилизирующие и поддерживающие условия на «космическом корабле» - Земле. Здесь ежедневно очищаются огромные объемы воздуха, возвращается в оборот вода, формируются климатические условия, поддерживается температура и выполняются другие функции, обеспечивающие жизнь. Кроме того, без всяких затрат со стороны человека здесь производится некоторое количество пищи и других материалов. Следует сказать и о не поддающихся учету эстетических ценностях этих экосистем.

Природные экосистемы, движимые Солнцем, субсидируемые другими естественными источник , - это экосистемы, обладающие естественной плодородностью и производящие излишки органического вещества, которые могут накапливаться. Они получают естественные энергетические субсидии в виде энергии приливов, прибоя, течений, поступающих с площади водосбора с дождем и ветром органических и минеральных веществ и т. п. Потребление энергии в них колеблется от 1*10 4 до 4*10 4 ккал*м -2 *год -1 . Прибрежная часть эстуария типа Невской губы - хороший пример таких экосистем, которые более плодородны, чем прилегающие участки суши, получающие то же количество солнечной энергии. Избыточное плодородие можно наблюдать и в дождевых лесах.

Экосистемы, движимые Солнцем и субсидируемые человеком , - это наземные и водные агроэкосистемы, получающие энергию не только от Солнца, но и от человека в виде энергетических дотаций. Высокая продуктивность их поддерживается мышечной энергией и энергией топлива, которые тратятся на возделывание, орошение, удобрение, селекцию, переработку, транспортировку и т.п. Хлеб, кукуруза, картофель «частично сделаны из нефти». Самое продуктивное сельское хозяйство получает энергии примерно столько же, сколько самые продуктивные природные экосистемы второго типа. Их продукция достигает приблизительно 50 000 ккал*м -2 год -1 . Различие между ними заключается в том, что человек направляет как можно больше энергии на производство продуктов питания ограниченного вида, а природа распределяет их между многими видами и накапливает энергию на «черный день», как бы раскладывая ее по разным карманам. Эта стратегия называется «стратегией повышения разнообразия в целях выживания».

Индустриально-городские экосистемы, движимые топливом , - венец достижений человечества. В индустриальных городах высококонцентрированная энергия топлива не дополняет, а заменяет солнечную энергию. Пищу - продукт систем, движимых Солнцем, - в город ввозят извне. Особенностью этих экосистем является огромная потребность плотно населенных городских районов в энергии - она на два-три порядка больше, чем в первых трех типах экосистем. Если в несубсидируемых экосистемах приток энергии колеблется от 10 3 до 10 4 ккал*м -2 год -1 , а в субсидируемых системах второго и третьего типа - от 10 4 до 4*10 4 ккал*м -2 год -1 , то в крупных индустриальных городах потребление энергии достигает нескольких миллионов килокалорий на 1 м 2: Нью-Йорк -4,8*10 6 , Токио – 3*10 6 , Москва - 10 6 ккал*м -2 год -1 .

Потребление энергии человеком в городе в среднем составляет более 80 млн ккал*год -1 ; для питания ему требуется всего около 1 млн ккал*год -1 , следовательно, на все другие виды деятельности (домашнее хозяйство, транспорт, промышленность и т. д.) человек расходует в 80 раз больше энергии, чем требуется для физиологи­ческого функционирования организма. Разумеется, в развиваю­щихся странах положение несколько иное.


Понятие о трофических уровнях

Трофический уровень - это совокупность организмов, занимающих определенное положение в общей цепи питания. К одному трофическому уровню принадлежат организмы, получающие свою энергию от Солнца через одинаковое число ступеней.

Такая последовательность и соподчиненность связанных в форме трофических уровней групп организмов представляет собой поток вещества и энергии в экосистеме, основу ее организации.

Трофическая структура экосистемы

В результате последовательности превращений энергии в пищевых цепях каждое сообщество живых организмов в экосистеме приобретает определенную трофическую структуру. Трофическая структура сообщества отражает соотношение между продуцентами, консументами (отдельно первого, второго и т.д. порядков) и редуцентами, выраженное или количеством особей живых организмов, или ихбиомассой, или заключенной в них энергией, рассчитанными на единицу площади в единицу времени.

Трофическую структуру обычно изображают в виде экологических пирамид. Эту графическую модель разработал в 1927 г. американский зоолог Чарльз Элтон. Основанием пирамиды служит первый трофический уровень - уровень продуцентов, а следующие этажи пирамиды образованы последующими уровнями - консументами различных порядков. Высота всех блоков одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне. Различают три способа построения экологических пирамид.

1. Пирамида чисел (численностей) отражает численность отдельных организмов на каждом уровне. Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. Иногда пирамиды чисел могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых).

2. Пирамида биомасс - соотношение масс организмов разных трофических уровней. Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д. Если организмы не слишком различаются по размерам, то на графике обычно получается ступенчатая пирамида с суживающейся верхушкой. Так, для образования 1 кг говядины необходимо 70-90 кг свежей травы.

В водных экосистемах можно также получить обращенную, или перевернутую, пирамиду биомасс, когда биомасса продуцентов оказывается меньшей, нежели консументов, а иногда и редуцентов. Например, в океане при довольно высокой продуктивности фитопланктона общая масса в данный момент его может быть меньше, нежели у потребителей-консументов (киты, крупные рыбы, моллюски).

Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем. Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

3. Пирамида энергии отражает величину потока энергии, скорость про хождения массы пищи через пищевую цепь. На структуру биоценоза в большей степени оказывает влияние не количество фиксированной энергии, а скорость продуцирования пищи.

Установлено, что максимальная величина энергии, передающейся на следующий трофический уровень, может в некоторых случаях составлять 30 % от предыдущего, и это в лучшем случае. Во многих биоценозах, пищевых цепях величина передаваемой энергии может составлять всего лишь 1 %.

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов) , согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10 % поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90 % всей энергии, которая расходуется на поддержание их жизнедеятельности.

Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.

Вот почему цепи питания обычно не могут иметь более 3-5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей. К конечному звену пищевой цепи так же, как и к верхнему этажу экологической пирамиды, будет поступать так мало энергии, что ее не хватит в случае увеличения числа организмов.

Этому утверждению можно найти объяснение, проследив, куда тратится энергия потребленной пищи: часть ее идет на построение новых клеток, т.е. на прирост, часть энергии пищи расходуется на обеспечение энергетического обмена или на дыхание. Поскольку усвояемость пищи не может быть полной, т.е. 100 %, то часть неусвоенной пищи в виде экскрементов удаляется из организма.

Учитывая, что энергия, затраченная на дыхание, не передается на следующий трофический уровень и уходит из экосистемы, становится ясным, почему каждый последующий уровень всегда будет меньше предыдущего.

Именно поэтому большие хищные животные всегда редки. Поэтому также нет хищников, которые питались бы волками. В таком случае они просто не прокормились бы, поскольку волки немногочисленны.

Трофическая структура экосистемы выражается в сложных пищевых связях между составляющими ее видами. Экологические пирамиды чисел, биомассы и энергии, изображенные в виде графических моделей, выражают количественные соотношения разных по способу питания организмов: продуцентов, консументов и редуцентов.



Министерство образования и науки Российской федерации

Национальный исследовательский

Иркутский государственный технический университет

Заочно-вечерний факультет

Кафедра общеобразовательных дисциплин


Контрольная работа по Экологии


выполнил: Яковлев В.Я

№ зачетной книжки: 13150837

группа: ЭПбз-13-2


Иркутск 2015


1. Дайте понятие экологического фактора. Классификация экологических факторов

2. Экологические пирамиды и их характеристика

3. Что называют биологическим загрязнением окружающей среды?

4. Какие существуют виды ответственности должностных лиц за экологические нарушения?

Список литературы


1. Дайте понятие экологического фактора. Классификация экологических факторов


Среда обитания - это та часть природы, которая окружает живой организм и с которой он непосредственно взаимодействует. Составные части и свойства среды многообразны и изменчивы. Любое живое существо живет в сложном меняющемся мире, постоянно приспосабливаясь к нему и регулируя свою жизнедеятельность в соответствии с его изменениями.

Отдельные свойства или части среды, воздействующие на организмы, называются экологическими факторами. Факторы среды многообразны. Они могут быть необходимы или, наоборот, вредны для живых существ, способствуют или препятствуют их выживанию и размножению. Экологические факторы имеют разную природу и специфику действия.

Абиотические факторы - температура, свет, радиоактивное излучение, давление, влажность воздуха, солевой состав воды, ветер, течения, рельеф местности - это все свойства неживой природы, которые прямо или косвенно влияют на живые организмы. Среди них различают:

Физические факторы - такие факторы, источником которых служит физическое состояние или явление (например, температура, давление, влажность, движение воздуха и др.).

Химические факторы - такие факторы, которые обусловлены химическим составом среды (соленость воды, содержание кислорода в воздухе и др.).

Эдафические факторы (почвенные) - совокупность химических, физических, механических свойств почв и горных пород, оказывающих воздействие как на организмы, для которых они являются средой обитания, так и на корневую систему растений (влажность, структура почвы, содержание биогенных элементов и др.).

Биотические факторы - это все формы воздействия живых существ друг на друга. Каждый организм постоянно испытывает на себе прямое или косвенное влияние других, вступает в связь с представителями своего вида и других видов - растениями, животными, микроорганизмами - зависит от них и сам оказывает на них воздействие. Окружающий органический мир - составляющая часть среды каждого живого существа.

Антропогенные факторы - это все формы деятельности человеческого общества, которые приводят к изменению природы, как среды обитания других видов, или непосредственно сказываются на их жизни. В ходе истории человечества, развитие сначала охоты, а затем сельского хозяйства, промышленности, транспорта сильно изменило природу нашей планеты. Значение антропогенных воздействий на весь живой мир Земли продолжает стремительно возрастать.

Выделяют следующие группы антропогенных факторов:

Изменение структуры земной поверхности;

Изменение состава биосферы, круговорота и баланса входящего в нее вещества;

Изменение энергетического и теплового баланса отдельных участков и регионов;

Изменения, вносимые в биоту.

Условия существования - это совокупность необходимых для организма элементов среды, с которыми он находится в неразрывном единстве и без которых существовать не может. Элементы среды, необходимые организму или отрицательно на него воздействующие, называются экологическими факторами. В природе эти факторы действуют не изолировано друг от друга, а в виде сложного комплекса. Комплекс экологических факторов, без которых организм существовать не может, и представляет собой условия существования этого организма.

Все приспособления организмов к существованию в различных условиях выработались исторически. В результате сформировались специфичные для каждой географической зоны группировки растений и животных.

Экологические факторы:

Элементарные - свет, тепло, влага, пища и так далее;

Комплексные;

Антропогенные;

Влияние экологических факторов на живые организмы характеризуется некоторыми количественными и качественными закономерностями. Немецкий агрохимик Ю. Либих, наблюдая за влиянием на растения химических удобрений, обнаружил, что ограничение дозы любого из них ведет к замедлению роста. Эти наблюдения позволили ученому сформулировать правило, которое носит название закона минимума (1840 г.).


2. Экологические пирамиды и их характеристика


Экологическая пирамида - графические изображения соотношения между продуцентами и консументами всех уровней (травоядных, хищников; видов, питающихся другими хищниками) в экосистеме.

Схематически изображать эти соотношения предложил американский зоолог Чарльз Элтон в 1927 году.

При схематическом изображении каждый уровень показывают в виде прямоугольника, длина или площадь которого соответствует численным значениям звена пищевой цепи (пирамида Элтона), их массе или энергии. Расположенные в определенной последовательности прямоугольники создают различные по форме пирамиды.

Основанием пирамиды служит первый трофический уровень - уровень продуцентов, последующие этажи пирамиды образованы следующими уровнями пищевой цепи - консументами различных порядков. Высота всех блоков в пирамиде одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне.

Экологические пирамиды различают в зависимости от показателей, на основании которых строится пирамида. При этом для всех пирамид установлено основное правило, согласно которому в любой экосистеме больше растений, чем животных, травоядных, чем плотоядных, насекомых, чем птиц.

На основе правила экологической пирамиды можно определить или рассчитать количественные соотношения разных видов растений и животных в естественных и искусственно создаваемых экологических системах. Например, 1 кг массы морского зверя (тюленя, дельфина) нужно 10 кг съеденной рыбы, а этим 10 кг нужно уже 100 кг их корма - водных беспозвоночных, которым в свою очередь для образования такой массы необходимо съедать 1000 кг водорослей и бактерий. В данном случае экологическая пирамида будет устойчива.

Однако, как известно, из каждого правила бывают исключения, которые будут рассмотрены в каждом типе экологических пирамид.


Типы экологических пирамид

Пирамиды чисел - на каждом уровне откладывается численность отдельных организмов

Пирамида чисел отображает отчетливую закономерность, обнаруженную Элтоном: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается (рис.3).

Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. В данном случае пирамида будет иметь вид треугольника с широким основанием суживающимся кверху.

Однако подобная форма пирамиды чисел характерна не для всех экосистем. Иногда они могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых), поэтому пирамиды чисел наименее информативны и наименее показательны, т.е. численность организмов одного трофического уровня в значительной степени зависит от их размеров.


Пирамиды биомасс - характеризует общую сухую или сырую массу организмов на данном трофическом уровне, например, в единицах массы на единицу площади - г/м2, кг/га, т/км2 или на объем - г/м3 (рис.4)

Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д.

В данном случае (если организмы не слишком различаются по размерам) пирамида также будет иметь вид треугольника с широким основанием суживающимся кверху. Однако и из этого правила имеются существенные исключения. Например, в морях биомасса растительноядного зоопланктона существенно (иногда в 2-3 раза) больше биомассы фитопланктона, представленного преимущественно одноклеточными водорослями. Это объясняется тем, что водоросли очень быстро выедаются зоопланктоном, но от полного выедания их предохраняет очень высокая скорость деления их клеток.

В целом для наземных биогеоценозов, где продуценты крупные и живут сравнительно долго, характерны относительно устойчивые пирамиды с широким основанием. В водных же экосистемах, где продуценты невелики по размеру и имеют короткие жизненные циклы, пирамида биомасс может быть обращенной, или перевернутой (острием направлена вниз). Так, в озерах и морях масса растений превышает массу потребителей только в период цветения (весной), а в остальное время года может создаться обратное положение.

Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем.

Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.


Пирамиды энергии - показывает величину потока энергии или продуктивности на последовательных уровнях (рис.5).

В противоположность пирамидам чисел и биомассы, отражающим статику системы (количество организмов в данный момент), пирамида энергии отражая картину скоростей прохождения массы пищи (количества энергии) через каждый трофический уровень пищевой цепи, дает наиболее полное представление о функциональной организации сообществ.

На форму этой пирамиды не влияют изменения размеров и интенсивности метаболизма особей, и если учтены все источники энергии, то пирамида всегда будет иметь типичный вид с широким основанием и суживающейся верхушкой. При построении пирамиды энергии в ее основание часто добавляют прямоугольник, показывающий приток солнечной энергии.

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90% всей энергии, которая расходуется на поддержание их жизнедеятельности.

Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.

Рассмотрим превращение энергии в экосистеме на примере простой пастбищной трофической цепи, в которой имеется всего три трофических уровня.

уровень - травянистые растения,

уровень - травоядные млекопитающие, например, зайцы

уровень - хищные млекопитающие, например, лисы

Питательные вещества создаются в процессе фотосинтеза растениями, которые из неорганических веществ (вода, углекислый газ, минеральные соли и т.д.) с использованием энергии солнечного света образуют органические вещества и кислород, а также АТФ. Часть электромагнитной энергии солнечного излучения при этом переходит в энергию химических связей синтезируемых органических веществ.

Все органическое вещество, создаваемое в процессе фотосинтеза называется валовой первичной продукцией (ВПП). Часть энергии валовой первичной продукции расходуется на дыхание, в результате чего образуется чистая первичная продукция (ЧПП), которая и является тем самым веществом, которое поступает на второй трофический уровень и используется зайцами.

Пусть ВПП составляет 200 условных единиц энергии, а затраты растений на дыхание (R) - 50%, т.е. 100 условных единиц энергии. Тогда чистая первичная продукция будет равна: ЧПП = ВПП - R (100 = 200 - 100), т.е. на второй трофический уровень к зайцам поступит 100 условных единиц энергии.

Однако, в силу разных причин зайцы способны потребить лишь некоторую долю ЧПП (в противном случае исчезли бы ресурсы для развития живой материи), существенная же ее часть, в виде отмерших органических остатков (подземные части растений, твердая древесина стеблей, ветвей и т.д.) не способна поедаться зайцами. Она поступает в детритные пищевые цепи и (или) подвергается разложению редуцентами (F). Другая часть идет на построение новых клеток (численность популяции, прирост зайцев - Р) и обеспечение энергетического обмена или дыхания (R).

В этом случае, согласно балансовому подходу, балансовое равенство расхода энергии (С) будет выглядеть следующим образом: С = Р + R + F, т.е. поступившая на второй трофический уровень энергия будет израсходована, согласно закону Линдемана, на прирост популяции - Р - 10%, остальные 90% будут израсходованы на дыхание и удаление неусвоенной пищи.

Таким образом, в экосистемах с повышением трофического уровня происходит быстрое уменьшение энергии, накапливаемой в телах живых организмов. Отсюда ясно почему каждый последующий уровень всегда будет меньше предыдущего и почему цепи питания обычно не могут иметь более 3-5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей: к конечному звену пищевой цепи так же, как и к верхнему этажу экологической пирамиды, будет поступать так мало энергии, что ее не хватит в случае увеличения числа организмов.

Такая последовательность и соподчиненность связанных в форме трофических уровней групп организмов представляет собой потоки вещества и энергии в биогеоценозе, основу его функциональной организации.


3. Что называют биологическим загрязнением окружающей среды?


Экология является теоретической основой рационального природоиспользования, ей принадлежит ведущая роль в разработке стратегии взаимоотношений природы и человеческого общества. Промышленная экология рассматривает нарушение природного равновесия в результате хозяйственной деятельности. При этом наиболее значительным по своим последствиям является загрязнение окружающей среды. Под термином «окружающая среда» принято понимать все то, что прямо или косвенно воздействует на жизнь и деятельность человека.

По-новому следует оценивать и роль дрожжей в природных экосистемах. Например, считавшиеся долго безвредными комменсалами многие эпифитные дрожжи, обильно обсеменяющие зеленые части растений, могут оказаться не такими уж «невинными», если учесть, что они представляют собой лишь гаплоидную стадию в жизненном цикле организмов, близко родственных фитопатогенным головневым или ржавчинным грибам. И, наоборот, патогенные для человека дрожжи, вызывающие опасные и трудноизлечимые болезни - кандидоз и криптококкоз - в природе имеют сапротрофную стадию и легко выделяются из мертвых органических субстратов. Из этих примеров видно, что для понимания экологических функций дрожжей необходимо изучение полных жизненных циклов каждого вида. Обнаружены и автохтонные почвенные дрожжи с особыми функциями, важными для образования почвенной структуры. Неисчерпаемы по многообразию и связи дрожжей с животными, особенно с беспозвоночными.

Загрязнение атмосферы может быть связано с естественными процессами: извержением вулканов, пыльными бурями, лесными пожарами.

Кроме того, атмосфера загрязняется в результате производственной деятельности человека.

Источниками загрязнения воздуха является дымовые выбросы промышленных предприятий. Выбросы бывают организованными и неорганизованными. Выбросы, поступающие из труб промышленных предприятий, является специально направленными, организованными. До того как поступить в трубу, они проходят через очистные сооружения, в которых осуществляется поглощение части вредных веществ. Из окон, дверей, вентиляционных отверстий производственных зданий в атмосферу поступают неорганизованные выбросы. Основными загрязняющими веществами в выбросах являются твердые частицы (пыль, сажа) и газообразные вещества (окись углерода, двуокись серы, окислы азота).

Селекция и идентификация микроорганизмов с полезными для определенного производства свойствами является весьма актуальной с экологической точки работой, так как их использование может интенсифицировать процесс или более полно использовать компоненты субстрата.

Сущность методов биоремедиации, биологической очистки, биопереработки и биомодификации заключается в использовании в окружающей среде различных биологических агентов, в первую очередь микроорганизмов. При этом можно применять как микроорганизмы, полученные традиционными методами селекции, так и созданные с помощью генной инженерии, а также трансгенные растения, которые могут влиять на биологическое равновесие природных экосистем.

В окружающей среде могут присутствовать промышленные штаммы различных микроорганизмов - продуцентов биосинтеза тех или иных веществ, а также продукты их метаболизма, которые выступают как биологический фактор загрязнения. Действие его может заключаться в изменении структуры биоценозов. Косвенные эффекты биологического загрязнения проявляются, например, при использовании антибиотиков и других лекарственных средств в медицине, когда появляются штаммы микроорганизмов, устойчивые к их действию и опасные для внутренней среды человека; в виде осложнений при использовании вакцин и сывороток, содержащих примеси веществ биологического происхождения; как аллергенное и генетическое действие микроорганизмов и продуктов их метаболизма.

Биотехнологические крупнотоннажные производства являются источником эмиссии биоаэрозолей, содержащих клетки непатогенных микроорганизмов, а также продукты их метаболизма. Основные источники биоаэрозолей, содержащих живые клетки микроорганизмов, - стадии ферментации и сепарации, а инактивированных клеток - стадия сушки. При массированном выбросе микробная биомасса, попадая в почву или в водоем, изменяет распределение потоков энергии и вещества в трофических цепях питания и влияет на структуру и функцию биоценозов, снижает активность самоочищения и, следовательно, влияет на глобальную функцию биоты. При этом возможно провоцирование активного развития определенных организмов, в том числе микроорганизмов санитарно-показательных групп.

Динамика интродуцированных популяций и показатели их биотехнологического потенциала зависят от вида микроорганизма, состояния почвенной микробной системы в момент интродукции, этапа микробной сукцессии, дозы внесенной популяции. При этом последствия внедрения микроорганизмов, новых для почвенных биоценозов, могут быть неоднозначными. Вследствие самоочищения элиминируется не всякая интродуцированная в почву микробная популяция. Характер популяционной динамики интродуцируемых микроорганизмов зависит от степени их приспособленности к новым условиям. Неприспособленные популяции погибают, приспособленные сохраняются.

Биологический фактор загрязнения можно определить как совокупность биологических компонентов, воздействие которых на человека и окружающую среду связано с их способностью размножаться в естественных или искусственных условиях, продуцировать биологически активные вещества, а при их попадании или продуктов их жизнедеятельности в окружающую среду оказывать неблагоприятные воздействия на окружающую среду, людей, животных, растения.

Биологические факторы загрязнения (чаще всего микробные) можно классифицировать следующим образом: живые микроорганизмы с природным геномом, не обладающие токсичностью, сапрофиты, живые микроорганизмы с природным геномом, обладающие инфекционной активностью, патогенные и условно-патогенные, вырабатывающие токсины, живые микроорганизмы, получаемые методами генной инженерии (генетически модифицированные микроорганизмы, содержащие чужие гены или новые комбинации генов - ГММО), инфекционные и другие вирусы, токсины биологического происхождения, инактивированные клетки микроорганизмов (вакцины, пыль термически инактивированной биомассы микроорганизмов кормового и пищевого назначения), продукты метаболизма микроорганизмов, органеллы и органические соединения клетки - продукты ее фракционирования.

Целью нашей работы явилось выделение и идентификация дрожжевых микроорганизмов в лаборатории биотехнологии Горского ГАУ, относящихся к первой группе выше перечисленных организмов. Так как это микроорганизмы с природным геномом и не обладающие токсичностью, то их воздействие на окружающую среду весьма органично и не значительно.

Источниками микроорганизмов, включая условно-патогенные и патогенные, являются сточные воды (хозяйственно-фекальные, производственные, городские ливневые стоки). В сельских районах фекальные загрязнения поступают со стоками населенных мест, с пастбищ, загонов для скота и птиц и от диких животных. В процессе обработки сточных вод количество патогенных микроорганизмов в них снижается. Масштабы их действия на окружающую среду незначительны, тем не менее поскольку этот источник эмиссии микробных клеток существует, его необходимо учитывать как фактор загрязнения окружающей среды.

Вода, используемая в процессе выполнения нашей работы для приготовления сред, смывов, обогрева автоклава и термостатов может быть очищена на городских очистных сооружениях вместе с городскими сточными водами аэробным или анаэробным способом.

Биологические загрязнители по экологическим свойствам существенно отличаются от химических. По химическому составу техногенные биологические загрязнения тождественны природным компонентам, они включаются в природный круговорот веществ и трофические цепи питания без аккумулирования в окружающей среде.

Все микробиологические и вирусологические лаборатории должны быть оснащены приемником сточных вод, где собирающиеся стоки перед сбросом в городскую канализацию обязательно обезвреживаются химическим, физическим или биологическим методом либо комбинированным способом.


4. Какие существуют виды ответственности должностных лиц за экологические нарушения?


Эколого-правовая ответственность является разновидностью общеюридической ответственности, но в то же время отличается от иных видов юридической ответственности.

Эколого-правовая ответственность рассматривается в трех взаимосвязанных аспектах:

как государственное принуждение к исполнению требований, предписанных законодательством;

как правоотношение между государством (в лице его органов) и правонарушителями (которые подвергаются санкциям);

как правовой институт, т.е. совокупность юридических норм, различных отраслей права (земельного, горного, водного, лесного, природоохранного и др.). Экологические правонарушения наказываются в соответствии с требованиями законодательства Российской Федерации. Конечная цель экологического законодательства и каждой отдельной его статьи заключается в охране от загрязнения, обеспечении правомерного использования окружающей среды и ее элементов, охраняемых законом. Сферой действия экологического законодательства являются окружающая среда и ее отдельные элементы. Предметом правонарушения признается элемент окружающей среды. Требования закона предполагают установление четкой причинной связи между допущенным нарушением и ухудшением окружающей среды.

Субъектом экологических правонарушений является лицо, достигшее 16-летнего возраста, на которое нормативно-правовыми актами возложены соответствующие должностные обязанности (соблюдение правил охраны окружающей среды, контроль за соблюдением правил), либо любое лицо, достигшее 16-летнего возраста, нарушившее требования экологического законодательства.

Для экологического правонарушения характерно наличие трех элементов:

противоправность поведения;

причинение экологического вреда (или реальная угроза) либо нарушение иных законных прав и интересов субъекта экологического права;

причинная связь между противоправным поведением и нанесенным экологическим вредом или реальной угрозой причинения такого вреда либо нарушением иных законных прав и интересов субъектов экологического права.

Ответственность за экологические правонарушения служит одним из основных средств обеспечения выполнения требований законодательства по охране окружающей среды и использованию природных ресурсов. Эффективность действия данного средства во многом зависит, прежде всего, от государственных органов, уполномоченных применять меры юридической ответственности к нарушителям экологического законодательства. В соответствии с российским законодательством в области охраны окружающей среды должностные лица и граждане за экологические правонарушения несут дисциплинарную, административную, уголовную, гражданско-правовую, материальную ответственность, а предприятия - административную и гражданско-правовую.

Дисциплинарная ответственность наступает за невыполнение планов и мероприятий по охране природы и рациональному использованию природных ресурсов, за нарушение экологических нормативов и иных требований природоохранительного законодательства, вытекающих из трудовой функции или должностного положения. Дисциплинарную ответственность несут должностные лица и иные виновные работники предприятий и организаций в соответствии с положениями, уставами, правилами внутреннего распорядка и другими нормативными актами (ст. 82 Закона «Об охране окружающей природной среды»). К нарушителям в соответствии с Кодексом законов о труде (с изменениями и дополнениями от 25 сентября 1992 г.) могут быть применены следующие дисциплинарные взыскания: замечание, выговор, строгий выговор, увольнение с работы, другие наказания (ст. 135).

Материальная ответственность также регулируется Кодексом законов о труде РФ (ст. 118-126). Такую ответственность несут должностные лица и иные работники предприятия, по вине которых предприятие понесло расходы по возмещению вреда, причиненного экологическим правонарушением.

Применение административной ответственности регулируется как природоохранительным законодательством, так и Кодексом РСФСР об административных правонарушениях 1984 г. (с изменениями и дополнениями). Закон «Об охране окружающей природной среды» расширил перечень составов экологических правонарушений, при совершении которых виновные должностные, физические и юридические лица несут административную ответственность. Такая ответственность наступает за превышение предельно допустимых выбросов и сбросов вредных веществ в окружающую среду, невыполнение обязанностей по проведению государственной экологической экспертизы и требований, содержащихся в заключении экологической экспертизы, предоставление заведомо неправильных и необоснованных заключений, несвоевременное предоставление информации и предоставление искаженной информации, отказ от предоставления своевременной, полной, достоверной информации о состоянии природной среды и радиационной обстановке и т.д.

Конкретный размер штрафа определяется органом, налагающим штраф, в зависимости от характера и вида правонарушения, степени вины правонарушителя и причиненного вреда. Административные штрафы налагаются уполномоченными на то государственными органами в области охраны окружающей среды, санитарно-эпидемиологического надзора РФ. При этом постановление о наложении штрафа может быть обжаловано в суд или арбитражный суд. Наложение штрафа не освобождает виновных от обязанности возмещения причиненного вреда (ст. 84 Закона «Об охране окружающей природной среды»).

В новом Уголовном кодексе РФ экологические преступления выделены в отдельную главу (гл. 26). В нем предусмотрена уголовная ответственность за нарушение правил экологической безопасности при производстве работ, нарушение правил хранения, утилизации экологически опасных веществ и отходов, нарушение правил безопасности при обращении с микробиологическими или другими биологическими агентами или токсинами, загрязнение вод, атмосферы и моря, нарушение законодательства о континентальном шельфе, порчу земли, незаконную добычу водных животных и растений, нарушение правил охраны рыбных запасов, незаконную охоту, незаконную порубку деревьев и кустарников, уничтожение или повреждение лесных массивов.

Применение мер дисциплинарной, административной или уголовной ответственности за экологические правонарушения не освобождает виновных лиц от обязанности возмещения вреда, причиненного экологическим правонарушением. Закон «Об охране окружающей природной среды» стоит на той позиции, что предприятия, организации и граждане, причиняющие вред окружающей среде, здоровью или имуществу граждан, народному хозяйству загрязнением окружающей среды, порчей, уничтожением, повреждением, нерациональным использованием природных ресурсов, разрушением естественных экологических систем и другими экологическими правонарушениями, обязаны возместить его в полном объеме в соответствии с действующим законодательством (ст. 86).

Гражданско-правовая ответственность в сфере взаимодействия общества и природы заключается главным образом в возложении на правонарушителя обязанности возместить потерпевшей стороне имущественный или моральный вред в результате нарушения правовых экологических требований.

Ответственность за экологические правонарушения выполняет ряд основных функций:

стимулирующую к соблюдению норм права окружающей среды;

компенсаторную, направленную на возмещение потерь в природной среде, возмещение вреда здоровью человека;

превентивную, заключающуюся в наказании лица, виновного в совершении экологического правонарушения.

Экологическое законодательство предусматривает три уровня наказания: за нарушение; нарушение, повлекшее значительный ущерб; нарушение, повлекшее смерть человека (тяжкие последствия). Смерть человека вследствие экологического преступления оценивается законом как неосторожность (совершенное по небрежности или легкомыслию). Видами наказаний при экологических нарушениях могут быть штраф, лишение права занимать определенные должности, лишение права заниматься определенной деятельностью, исправительные работы, ограничение свободы, лишение свободы.

Одним из самых тяжких экологических преступлений является экоцид - массовое уничтожение растительного мира (растительных сообществ земли России или отдельных ее регионов) или животного мира (совокупность живых организмов всех видов диких животных, населяющих территорию России или определенный ее регион), отравление атмосферы и водных ресурсов (поверхностные и подземные воды, которые используются или могут быть использованы), а также совершение иных действий, способных вызвать экологическую катастрофу. Общественная опасность экоцида состоит в угрозе или нанесении огромного вреда окружающей природной среде, сохранению генофонда народа, животного и растительного мира.

Экологическая катастрофа проявляется в серьезном нарушении экологического равновесия в природе, разрушении устойчивого видового состава живых организмов, полном или существенном сокращении их численности, в нарушении циклов сезонных изменений биотического кругооборота веществ и биологических процессов. Мотивом экоцида может быть ложно понятые интересы военного или государственного характера, совершение действий с прямым или косвенным умыслом.

Успех в наведении экологического правопорядка достигается постепенным наращиванием общественного и государственного воздействия на злостных правонарушителей, оптимальным сочетанием воспитательных, экономических и правовых мер.

экологический загрязнение правонарушение


Список литературы


1. Акимова Т.В. Экология. Человек-Экономика-Биота-Среда: Учебник для студентов вузов/ Т.А.Акимова, В.В.Хаскин; 2-е изд., перераб. и дополн.- М.: ЮНИТИ, 2009.- 556 с.

Акимова Т.В. Экология. Природа-Человек-Техника.: Учебник для студентов техн. направл. и специал. вузов/ Т.А. Акимова, А.П. Кузьмин, В.В. Хаскин..- Под общ. ред. А.П.Кузьмина. М.: ЮНИТИ-ДАНА, 2011.- 343 с.

Бродский А.К. Общая экология: Учебник для студентов вузов. М.: Изд. Центр «Академия», 2011. - 256 с.

Воронков Н.А. Экология: общая, социальная, прикладная. Учебник для студентов вузов. М.: Агар, 2011. - 424 с.

Коробкин В.И. Экология: Учебник для студентов вузов/ В.И. Коробкин, Л.В. Передельский. -6-е изд., доп. И перераб.- Ростон н/Д: Феникс, 2012.- 575с.

Николайкин Н.И., Николайкина Н.Е., Мелехова О.П. Экорлогия. 2-е изд. Учебник для вузов. М.: Дрофа, 2008. - 624 с.

Стадницкий Г.В., Родионов А.И. Экология: Уч. пособие для стут. химико-технол. и техн. сп. вузов./ Под ред. В.А. Соловьева, Ю.А. Кротова.- 4-е изд., испр. - СПб.: Химия, 2012. -238с.

Одум Ю. Экология т.т. 1,2. Мир,2011.

Чернова Н.М. Общая экология: Учебник для студентов педагогических вузов/ Н.М. Чернова, А.М. Былова. - М.: Дрофа, 2008.-416 с.

Экология: Учебник для студентов высш. и сред. учеб. заведений, обуч. по техн. спец. и направлениям/Л.И. Цветкова, М.И. Алексеев, Ф.В. Карамзинов и др.; под общ. ред. Л.И. Цветковой. М.: АСБВ; СПб.: Химиздат, 2012.- 550 с.

Экология. Под ред. проф. В.В. Денисова. Ростов-н/Д.: ИКЦ «МарТ», 2011. - 768 с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

1. Пирамиды чисел - на каждом уровне откладывается численность отдельных организмов.

Пирамида чисел отображает отчетливую закономерность, обнаруженную Элтоном : количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается (рис.3).

Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. В данном случае пирамида будет иметь вид треугольника с широким основанием суживающимся кверху.

Однако подобная форма пирамиды чисел характерна не для всех экосистем . Иногда они могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых), поэтому пирамиды чисел наименее информативны и наименее показательны, т.е. численность организмов одного трофического уровня в значительной степени зависит от их размеров.

2. Пирамиды биомасс - характеризует общую сухую или сырую массу организмов на данном трофическом уровне, например, в единицах массы на единицу площади - г/м 2 , кг/га, т/км 2 или на объем - г/м 3 (рис.4)

Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д.

В данном случае (если организмы не слишком различаются по размерам) пирамида также будет иметь вид треугольника с широким основанием суживающимся кверху. Однако и из этого правила имеются существенные исключения. Например, в морях биомасса растительноядного зоопланктона существенно (иногда в 2-3 раза) больше биомассы фитопланктона, представленного преимущественно одноклеточными водорослями. Это объясняется тем, что водоросли очень быстро выедаются зоопланктоном, но от полного выедания их предохраняет очень высокая скорость деления их клеток.

В целом для наземных биогеоценозов , где продуценты крупные и живут сравнительно долго, характерны относительно устойчивые пирамиды с широким основанием. В водных же экосистемах, где продуценты невелики по размеру и имеют короткие жизненные циклы, пирамида биомасс может быть обращенной, или перевернутой (острием направлена вниз). Так, в озерах и морях масса растений превышает массу потребителей только в период цветения (весной), а в остальное время года может создаться обратное положение.

Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем.


Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

3. Пирамиды энергии - показывает величину потока энергии или продуктивности на последовательных уровнях (рис.5).

В противоположность пирамидам чисел и биомассы, отражающим статику системы (количество организмов в данный момент), пирамида энергии отражая картину скоростей прохождения массы пищи (количества энергии) через каждый трофический уровень пищевой цепи, дает наиболее полное представление о функциональной организации сообществ.

На форму этой пирамиды не влияют изменения размеров и интенсивности метаболизма особей, и если учтены все источники энергии, то пирамида всегда будет иметь типичный вид с широким основанием и суживающейся верхушкой. При построении пирамиды энергии в ее основание часто добавляют прямоугольник, показывающий приток солнечной энергии.

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90% всей энергии, которая расходуется на поддержание их жизнедеятельности.

Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.

Рассмотрим превращение энергии в экосистеме на примере простой пастбищной трофической цепи, в которой имеется всего три трофических уровня.

1. Уровень - травянистые растения,

2. Уровень - травоядные млекопитающие, например, зайцы

3. Уровень - хищные млекопитающие, например, лисы

Питательные вещества создаются в процессе фотосинтеза растениями, которые из неорганических веществ (вода, углекислый газ, минеральные соли и т.д.) с использованием энергии солнечного света образуют органические вещества и кислород , а также АТФ . Часть электромагнитной энергии солнечного излучения при этом переходит в энергию химических связей синтезируемых органических веществ.

Все органическое вещество, создаваемое в процессе фотосинтеза называется валовой первичной продукцией (ВПП). Часть энергии валовой первичной продукции расходуется на дыхание, в результате чего образуется чистая первичная продукция (ЧПП), которая и является тем самым веществом, которое поступает на второй трофический уровень и используется зайцами.

Пусть ВПП составляет 200 условных единиц энергии, а затраты растений на дыхание (R) - 50%, т.е. 100 условных единиц энергии. Тогда чистая первичная продукция будет равна: ЧПП = ВПП - R (100 = 200 - 100), т.е. на второй трофический уровень к зайцам поступит 100 условных единиц энергии.

Однако, в силу разных причин зайцы способны потребить лишь некоторую долю ЧПП (в противном случае исчезли бы ресурсы для развития живой материи), существенная же ее часть, в виде отмерших органических остатков (подземные части растений, твердая древесина стеблей, ветвей и т.д.) не способна поедаться зайцами. Она поступает в детритные пищевые цепи и (или) подвергается разложению редуцентами (F). Другая часть идет на построение новых клеток (численность популяции, прирост зайцев - Р) и обеспечение энергетического обмена или дыхания (R).

В этом случае, согласно балансовому подходу, балансовое равенство расхода энергии (С) будет выглядеть следующим образом: С = Р + R + F, т.е. поступившая на второй трофический уровень энергия будет израсходована, согласно закону Линдемана , на прирост популяции - Р - 10%, остальные 90% будут израсходованы на дыхание и удаление неусвоенной пищи.

Таким образом, в экосистемах с повышением трофического уровня происходит быстрое уменьшение энергии, накапливаемой в телах живых организмов. Отсюда ясно почему каждый последующий уровень всегда будет меньше предыдущего и почему цепи питания обычно не могут иметь более 3-5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей: к конечному звену пищевой цепи так же, как и к верхнему этажу экологической пирамиды, будет поступать так мало энергии, что ее не хватит в случае увеличения числа организмов.

Такая последовательность и соподчиненность связанных в форме трофических уровней групп организмов представляет собой потоки вещества и энергии в биогеоценозе, основу его функциональной организации.

Важнейший вид взаимоотношений между организмами в биоценозе, фактически формирующими его структуру, - это пищевые связи хищника и жертвы: одни - поедающие, другие - поедаемые. При этом все организмы, живые и мертвые, являются пищей для других организмов: заяц ест траву, лиса и волк охотятся на зайцев, хищные птицы (ястребы, орлы и т.п.) способны утащить и съесть как лисенка, так и волчонка. Погибшие растения, зайцы, лисы, волки, птицы становятся пищей для детритофагов (редуцентов или иначе деструкторов).

Пищевая цепь - это последовательность организмов, в которой каждый из них съедает или разлагает другой. Она представляет собой путь движущегося через живые организмы однонаправленного потока поглощенной при фотосинтезе малой части высокоэффективной солнечной энергии, поступившей на Землю. В конечном итоге эта цепь возвращается в окружающую природную среду в виде низкоэффективной тепловой энергии. По ней также движутся питательные вещества от продуцентов к консументам и далее к редуцентам, а затем обратно к продуцентам.

Каждое звено пищевой цепи называют трофическим уровнем. Первый трофический уровень занимают автотрофы, иначе именуемые первичными продуцентами. Организмы второго трофического уровня называют первичными консументами, третьего - вторичными консументами и т.д. Обычно бывают четыре или пять трофических уровней и редко более шести (рис. 1).

Существуют два главных типа пищевых цепей - пастбищные (или «выедания») и детритные (или «разложения»).

Рис. 1. Пищевые цепи биоценоза по Н.Ф. Реймерсу : обобщенная (а) и реальная (б)

Стрелками на рисунке 1 показано направление перемещения энергии, а цифрами - относительное количество энергии, приходящей на трофический уровень.

В пастбищных пищевых цепях первый трофический уровень занимают зеленые растения, второй - пастбищные животные (термин «пастбищные» охватывает все организмы, питающиеся растениями), а третий - хищники.

Так, пастбищными пищевыми цепями являются:

РАСТИТЕЛЬНЫЙ МАТЕРИАЛ (например, нектар) => МУХА => ПАУК =>

=> ЗЕМЛЕРОЙКА => СОВА

СОК РОЗОВОГО КУСТА => ТЛЯ => БОЖЬЯ КОРОВКА => ПАУК =>

=> НАСЕКОМОЯДНАЯ ПТИЦА => ХИЩНАЯ ПТИЦА.

Детритная пищевая цепь начинается с детрита по схеме:

ДЕТРИТ-> ДЕТРИТОФАГ -> ХИЩНИК

Характерными детритными пищевыми цепями являются:

ЛИСТОВАЯ ПОДСТИЛКА ЛЕСА => ДОЖДЕВОЙ ЧЕРВЬ => ЧЕРНЫЙ ДРОЗД =>

=> ЯСТРЕБ-ПЕРЕПЕЛЯТНИК

МЕРТВОЕ ЖИВОТНОЕ => ЛИЧИНКИ ПАДАЛЬНОЙ МУХИ => ТРАВЯНАЯ ЛЯГУШКА => ОБЫКНОВЕННЫЙ УЖ.

Концепция пищевых цепей позволяет в дальнейшем проследить круговорот химических элементов в природе, хотя простые пищевые цепи, подобные изображенным ранее, где каждый организм представлен как питающийся организмами только какого-то одного типа, в природе встречаются редко.

Реальные пищевые связи намного сложнее, ибо животное может питаться организмами разных типов, входящих в одну и ту же пищевую цепь или в различные цепи, что особенно характерно для хищников (консументов) высших трофических уровней. Связь между пастбищной и детритной пищевыми цепями иллюстрирует предложенная Ю. Одумом модель потока энергии (рис. 2).

Всеядные животные (в частности, человек) питаются и консументами, и продуцентами. Таким образом, в природе пищевые цепи переплетаются, образуют пищевые (трофические) сети.

Рис. 2. Схема пастбищной и детритнои пищевых цепей (по Ю. Одуму)

Правило Линдемана (10%)

Сквозной поток энергии, проходя через трофические уровни биоценоза, постепенно гасится. В 1942 г. Р. Линдеман сформулировал закон пирамиды энергий, или закон (правило) 10%, согласно которому с одного трофического уровня экологической пирамиды переходит на другой, более высокий ее уровень (по «лестнице»: продуцент - консумент - редуцент) в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии. Обратный поток, связанный с потреблением веществ и продуцируемой верхним уровнем экологической пирамиды энергии более низкими ее уровнями, например, от животных к растениям, намного слабее - не более 0,5% (даже 0,25%) от общего ее потока, и потому говорить о круговороте энергии в биоценозе не приходится.

Если энергия при переходе на более высокий уровень экологической пирамиды десятикратно теряется, то накопление ряда веществ, в том числе токсичных и радиоактивных, в примерно такой же пропорции увеличивается. Этот факт фиксирован в правиле биологического усиления. Оно справедливо для всех ценозов. В водных биоценозах накопление многих токсичных веществ, в том числе хлорорганических пестицидов, коррелирует с массой жиров (липидов), т.е. явно имеет энергетическую подоснову.

Мангры

Пищевые цепи можно разделить на два типа. Пастбищная цепь начинается от зеленого растения и идет далее к пасущимся растительноядным животным и затем - к хищникам. Примеры пастбищных цепей приведены на иллюстрациях к параграфу 4.2. Детритная цепь идет от мертвого органического вещества (детрита) к микроорганизмам-редуцентам и животным, поедающим мертвые остатки (детритофагам), и затем - к хищникам, питающимся этими животными и микробами. На этом рисунке показан пример детритной пищевой цепи из тропиков; это цепь, начинающаяся от опадающих листьев мангров - деревьев и кустарников, растущих на периодически затопляемых приливами морских побережьях и в устьях рек. Их листья падают в солоноватые воды, заросшие мангровыми деревьями, и разносятся течением по обширной площади заливов. В воде на опавших листьях развиваются грибы, бактерии и простейшие, которых вместе с листьями поедают многочисленные организмы: рыбы, моллюски, крабы, рачки, личинки насекомых и круглые черви - нематоды. Этими животными питаются мелкие рыбы (например, гольяны), а их в свою очередь, поедает крупная рыба и хищные рыбоядные птицы.

ПИЩЕВАЯ ЦЕПЬ (трофическая цепь, цепь питания), взаимосвязь организмов через отношения пища - потребитель (одни служат пищей для других). При этом происходит трансформация вещества и энергии от продуцентов (первичных производителей) через консументов (потребителей) к редуцентам (преобразователям мёртвой органики в неорганические вещества, усваиваемые продуцентами).

Различают 2 типа пищевых цепей - пастбищную и детритную. Пастбищная цепь начинается с зелёных растений, идёт к пасущимся растительноядным животным (консументы 1-го порядка) и затем к хищникам, добывающим этих животных (в зависимости от места в цепи - консументы 2-го и последующих порядков). Детритная цепь начинается с детрита (продукт распада органики), идёт к микроорганизмам, которые им питаются, а затем к детритофагам (животные и микроорганизмы, вовлечённые в процесс разложения отмирающей органики).

Примером пастбищной цепи может служить многоканальная её модель в африканской саванне. Первичными продуцентами являются травостой и деревья, консументами 1-го порядка - растительноядные насекомые и травоядные животные (копытные, слоны, носороги и др.), 2-го порядка - хищные насекомые, 3-го - плотоядные пресмыкающиеся (змеи и др.), 4-го - хищные млекопитающие и хищные птицы. В свою очередь детритофаги (жуки-скарабеи, гиены, шакалы, грифы и т. д.) на каждом из этапов пастбищной цепи разрушают туши погибших животных и остатки пищи хищников. Количество особей, включённых в пищевую цепь, в каждом её звене последовательно уменьшается (правило экологической пирамиды), т. е. число жертв всякий раз существенно превышает число их потребителей. Пищевые цепи не изолированы одна от другой, а переплетаются друг с другом, образуя пищевые сети.

Содддержание жизнедеятельности организмов и круговорот вещества в экосистемах, т. е. существование экосистем, зависит от постоянного притока энергии, необходимой всем организмам для их жизнедеятельности и самовоспроизведения (рис. 12.19).

Рис. 12.19. Поток энергии в экосистеме (по Ф. Рамаду, 1981)

В отличие от веществ, непрерывно циркулирующих по разным блокам экосистемы, которые всегда могут повторно использоваться, входить в круговорот, энергия может быть использована только раз, т. е. имеет место линейный поток энергии через экосистему.

Одностороний приток энергии как универсальное явление природы происходит в результате действия законов термодинамики. Первый закон гласит, что энергия может превращаться из одной формы (например, света) в другую (например, потенциальную энергию пищи), но не может быть создана или уничтожена. Второй закон утверждает, что не может быть ни одного процесса, связанного с превращением энергии, без потерь некоторой ее части. Определенное количество энергии в таких превращениях рассеивается в недоступную тепловую энергию, а следовательно, теряется. Отсюда не может быть превращений, к примеру, пищевых веществ в вещество, из которого состоит тело организма, идущих со 100-процентной эффективностью.

Таким образом, живые организмы являются преобразователями энергии. И каждый раз, когда происходит превращение энергии, часть ее теряется в виде тепла. В конечном итоге вся энергия, поступающая в биотический круговорот экосистемы, рассеивается в виде тепла. Живые организмы фактически не используют тепло как источник энергии для совершения работы — они используют свет и химическую энергию.

Пищевые цепи и сети, трофические уровни

Внутри экосистемы содержащие энергию вещества создаются автотрофными организмами и служат пищей для гетеротрофов. Пищевые связи — это механизмы передачи энергии от одного организма к другому.

Типичный пример: животное поедает растения. Это животное, в свою очередь, может быть съедено другим животным. Таким путем может происходить перенос энергии через ряд организмов — каждый последующий питается предыдущим, поставляющим ему сырье и энергию (рис. 12.20).

Рис. 12.20. Биотический круговорот веществ: пищевая цепь

(по А. Г. Банникову и др., 1985)

Такая последовательность переноса энергии называется пищевой (трофической) цепью, или цепью питания. Место каждого звена в цепи питания является трофическим уровнем. Первый трофический уровень, как уже было отмечено ранее, занимают автотрофы, или так называемые первичные проду-з центы. Организмы второгого трофического уровня называются первичными консументами, третьего — вторичными консументами и т. д.

Обычно различают три типа пищевых цепей. Пищевая цепь хищников начинается с растений и переходит от мелких организмов к организмам все более крупных размеров. На суше пищевые цепи состоят из трех-четырех звеньев.

Одна из простейших пищевых цепей имеет вид (см. рис. 12.5):

растение ® заяц ® волк

продуцент ® травоядное ® плотоядное

Широко распространены и такие пищевые цепи:

растительный материал (например, нектар) ® муха ® паук ®

землеройка ® сова.

сок розового куста ® тля ® божья (тлевая) коровка ®

® паук ® насекомоядная птица ® хищная птица.

- (приносится течением - озеро, море; вносится человеком - сельскохозяйственные угодья, переносится ветром или осадками - растительные остатки на эродированных склонах гор).

Различия между экосистемой и биогеоценозом можно свести к следующим положениям:

1) биогеоценоз - понятие территориальное, относится к конкретным участкам суши и имеет определенные границы, совпадающие с границами фитоценоза. Характерная особенность биогеоценоза, на которую указывают Н.В. Тимофеев-Ресовский, А.Н. Тюрюканов (1966) - через территорию биогеоценоза не проходит ни одна существенная биоценотическая, почвенно-геохимическая, геоморфологическая и микроклиматическая граница.

Понятие экосистемы шире, чем понятие биогеоценоза; оно применимо к биологическим системам разной сложности и размеров; экосистемы часто не имеют определенного объема и строгих границ;

2) в биогеоценозе органическое вещество всегда продуцируют растения, поэтому основной компонент биогеоценоза - фитоценоз ;

В экосистемах органическое вещество не всегда создается живыми организмами, нередко поступает извне.

(приносится течением - озеро, море; вносится человеком - сельскохозяйственные угодья, переносится ветром или осадками - растительные остатки на эродированных склонах гор).

3) биогеоценоз потенциально бессмертен ;

Существование экосистемы может закончиться с прекращением прихода в нее вещества или энергии.

4) экосистема может быть и наземным и водным образованием;

Биогеоценоз всегда наземная или мелководная экосистема.

5) - в биогеоценозе всегда должен быть единый эдификатор (эдификаторная группировка или синузия), определяющий всю жизнь и строй системы.

В экосистеме их может быть несколько.

На ранних стадиях развития экосистема склона - это будущий лесной ценоз. Она состоит из группировок организмов с разными эдификаторами и довольно неоднородными условиями среды. Лишь в будущем на одну и ту же группировку могут оказывать влияние не только её эдификатор, но и эдификатор ценоза. И второй будет основным.

Таким образом, не каждая экосистема является биогеоценозом, но каждый биогеоценоз - экосистема , полностью соответствующая определению Тенсли.

Экологическая структура биогеоценоза

Каждый биогеоценоз слагается из определенных экологических групп организмов, соотношение которых отражает экологическую структуру сообщества, складывающуюся в течение длительного времени в определенных климатических, почвенно-грунтовых и ландшафтных условиях строго закономерно. Например, в биогеоценозах разных природных зон закономерно изменяется соотношение фитофагов (животных, питающихся растениями) и сапрофагов. В степных, полупустынных и пустынных районах фитофаги преобладают над сапрофагами, а в лесных сообществах, наоборот, сильнее развита сапрофагия. В глубинах океана основным типом питания является хищничество, тогда как на освещенной поверхности водоема преобладают фильтраторы, потребляющие фитопланктон, либо виды со смешанным питанием.