Вычитание сложных дробей. Дроби. Вычитание дробей

На данном уроке будет рассмотрено сложение и вычитание алгебраических дробей с разными знаменателями. Мы уже знаем, как складывать и вычитать обыкновенные дроби с разными знаменателями. Для этого дроби необходимо привести к общему знаменателю. Оказывается, что алгебраические дроби подчиняются тем же самым правилам. При этом мы уже умеем приводить алгебраические дроби к общему знаменателю. Сложение и вычитание дробей с разными знаменателями - одна из наиболее важных и сложных тем в курсе 8 класса. При этом данная тема будет встречаться во многих темах курса алгебры, которые вы будете изучать в дальнейшем. В рамках урока мы изучим правила сложения и вычитания алгебраических дробей с разными знаменателями, а также разберём целый ряд типовых примеров.

Рассмотрим простейший пример для обыкновенных дробей.

Пример 1. Сложить дроби: .

Решение:

Вспомним правило сложения дробей. Для начала дроби необходимо привести к общему знаменателю. В роли общего знаменателя для обыкновенных дробей выступает наименьшее общее кратное (НОК) исходных знаменателей.

Определение

Наименьшее натуральное число, которое делится одновременно на числа и .

Для нахождения НОК необходимо разложить знаменатели на простые множители, а затем выбрать все простые множители, которые входят в разложение обоих знаменателей.

; . Тогда в НОК чисел должны входить две двойки и две тройки: .

После нахождения общего знаменателя, необходимо для каждой из дробей найти дополнительный множитель (фактически, поделить общий знаменатель на знаменатель соответствующей дроби).

Затем каждая дробь умножается на полученный дополнительный множитель. Получаются дроби с одинаковыми знаменателями, складывать и вычитать которые мы научились на прошлых уроках.

Получаем: .

Ответ: .

Рассмотрим теперь сложение алгебраических дробей с разными знаменателями. Сначала рассмотрим дроби, знаменатели которых являются числами.

Пример 2. Сложить дроби: .

Решение:

Алгоритм решения абсолютно аналогичен предыдущему примеру. Легко подобрать общий знаменатель данных дробей: и дополнительные множители для каждой из них.

.

Ответ: .

Итак, сформулируем алгоритм сложения и вычитания алгебраических дробей с разными знаменателями :

1. Найти наименьший общий знаменатель дробей.

2. Найти дополнительные множители для каждой из дробей (поделив общий знаменатель на знаменатель данной дроби).

3. Домножить числители на соответствующие дополнительные множители.

4. Сложить или вычесть дроби, пользуясь правилами сложения и вычитания дробей с одинаковыми знаменателями.

Рассмотрим теперь пример с дробями, в знаменателе которых присутствуют буквенные выражения.

Пример 3. Сложить дроби: .

Решение:

Поскольку буквенные выражения в обоих знаменателях одинаковы, то следует найти общий знаменатель для чисел . Итоговый общий знаменатель будет иметь вид: . Таким образом, решение данного примера имеет вид:.

Ответ: .

Пример 4. Вычесть дроби: .

Решение:

Если «схитрить» при подборе общего знаменателя не удаётся (нельзя разложить на множители или воспользоваться формулами сокращённого умножения), то в качестве общего знаменателя приходится брать произведение знаменателей обеих дробей.

Ответ: .

Вообще, при решении подобных примеров, наиболее сложным заданием является нахождение общего знаменателя.

Рассмотрим более сложный пример.

Пример 5. Упростить: .

Решение:

При нахождении общего знаменателя необходимо прежде всего попытаться разложить знаменатели исходных дробей на множители (чтобы упростить общий знаменатель).

В данном конкретном случае:

Тогда легко определить общий знаменатель: .

Определяем дополнительные множители и решаем данный пример:

Ответ: .

Теперь закрепим правила сложения и вычитания дробей с разными знаменателями.

Пример 6. Упростить: .

Решение:

Ответ: .

Пример 7. Упростить: .

Решение:

.

Ответ: .

Рассмотрим теперь пример, в котором складываются не две, а три дроби (ведь правила сложения и вычитания для большего количества дробей остаются такими же).

Пример 8. Упростить: .

Найдите числитель и знаменатель. Дробь включает два числа: число, которое расположено над чертой, называется числителем, а число, которое находится под чертой – знаменателем. Знаменатель обозначает общее количество частей, на которые разбито некоторое целое, а числитель – это рассматриваемое количество таких частей.

  • Например, в дроби ½ числителем является 1, а знаменателем 2.

Определите знаменатель. Если две и более дроби имеют общий знаменатель, у таких дробей под чертой находится одно и то же число, то есть в этом случае некоторое целое разбито на одинаковое количество частей. Складывать дроби с общим знаменателем очень просто, так как знаменатель суммарной дроби будет таким же, как у складываемых дробей. Например:

  • У дробей 3/5 и 2/5 общий знаменатель 5.
  • У дробей 3/8, 5/8, 17/8 общий знаменатель 8.
  • Определите числители. Чтобы сложить дроби с общим знаменателем, сложите их числители, а результат запишите над знаменателем складываемых дробей.

    • У дробей 3/5 и 2/5 числители 3 и 2.
    • У дробей 3/8, 5/8, 17/8 числители 3, 5, 17.
  • Сложите числители. В задаче 3/5 + 2/5 сложите числители 3 + 2 = 5. В задаче 3/8 + 5/8 + 17/8 сложите числители 3 + 5 + 17 = 25.

  • Запишите суммарную дробь. Помните, что при сложении дробей с общим знаменателем он остается без изменений – складываются только числители.

    • 3/5 + 2/5 = 5/5
    • 3/8 + 5/8 + 17/8 = 25/8
  • Если нужно, преобразуйте дробь. Иногда дробь можно записать в виде целого числа, а не обыкновенной или десятичной дроби. Например, дробь 5/5 легко преобразуется в 1, так как любая дробь, у которой числитель равен знаменателю, есть 1. Представьте пирог, разрезанный на три части. Если вы съедите все три части, то вы съедите целый (один) пирог.

    • Любую обыкновенную дробь можно преобразовать в десятичную; для этого разделите числитель на знаменатель. Например, дробь 5/8 можно записать так: 5 ÷ 8 = 0,625.
  • Если возможно, упростите дробь. Упрощенная дробь – эта дробь, числитель и знаменатель которой не имеют общих делителей.

    • Например, рассмотрим дробь 3/6. Здесь и у числителя, и у знаменателя есть общий делитель, равный 3, то есть числитель и знаменатель нацело делятся на 3. Поэтому дробь 3/6 можно записать так: 3 ÷ 3/6 ÷ 3 = ½.
  • Если нужно, преобразуйте неправильную дробь в смешанную дробь (смешанное число). У неправильной дроби числитель больше знаменателя, например, 25/8 (у правильной дроби числитель меньше знаменателя). Неправильную дробь можно преобразовать в смешанную дробь, которая состоит из целой части (то есть целого числа) и дробной части (то есть правильной дроби). Чтобы преобразовать неправильную дробь, например, 25/8, в смешанное число, выполните следующие действия:

    • Разделите числитель неправильной дроби на ее знаменатель; запишите неполное частное (целый ответ). В нашем примере: 25 ÷ 8 = 3 плюс некоторый остаток. В данном случае целый ответ – это целая часть смешанного числа.
    • Найдите остаток. В нашем примере: 8 х 3 = 24; полученный результат вычтите из исходного числителя: 25 - 24 = 1, то есть остаток равен 1. В данном случае остаток – это числитель дробной части смешанного числа.
    • Запишите смешанную дробь. Знаменатель не меняется (то есть равен знаменателю неправильной дроби), поэтому 25/8 = 3 1/8.
  • Дробные выражения сложны для понимания ребёнком. У большинства возникают сложности, связанные с . При изучении темы «сложение дробей с целыми числами», ребёнок впадает в ступор, затрудняясь решить задание. Во многих примерах перед тем как выполнить действие нужно произвести ряд вычислений. Например, преобразовать дроби или перевести неправильную дробь в правильную.

    Объясним ребёнку наглядно. Возьмём три яблока, два из которых будут целыми, а третье разрежем на 4 части. От разрезанного яблока отделим одну дольку, а остальные три положим рядом с двумя целыми фруктами. Получим ¼ яблока в одной стороне и 2 ¾ — в другой. Если мы их соединим, то получим целых три яблока. Попробуем уменьшить 2 ¾ яблока на ¼, то есть уберём ещё одну дольку, получим 2 2/4 яблока.

    Рассмотрим подробнее действия с дробями, в составе которых присутствуют целые числа:

    Для начала вспомним правило вычисления для дробных выражений с общим знаменателем:

    На первый взгляд всё легко и просто. Но это касается только выражений, не требующих преобразования.

    Как найти значение выражения где знаменатели разные

    В некоторых заданиях необходимо найти значение выражения, где знаменатели разные. Рассмотрим конкретный случай:
    3 2/7+6 1/3

    Найдём значение данного выражения, для этого найдём для двух дробей общий знаменатель.

    Для чисел 7 и 3 – это 21. Целые части оставляем прежними, а дробные – приводим к 21, для этого первую дробь умножаем на 3, вторую – на 7, получаем:
    6/21+7/21, не забываем, что целые части не подлежат преобразованию. В итоге получаем две дроби с одним знаменателям и вычисляем их сумму:
    3 6/21+6 7/21=9 15/21
    Что если в результате сложения получается неправильная дробь, которая уже имеет целую часть:
    2 1/3+3 2/3
    В данном случае складываем целые части и дробные, получаем:
    5 3/3, как известно, 3/3 – это единица, значит 2 1/3+3 2/3=5 3/3=5+1=6

    С нахождением суммы всё понятно, разберём вычитание:

    Из всего сказанного вытекает правило действий над смешанными числами, которое звучит так:

    • Если же от дробного выражения необходимо вычесть целое число, не нужно представлять второе число в виде дроби, достаточно произвести действие только над целыми частями.

    Попробуем самостоятельно вычислить значение выражений:

    Разберём подробнее пример под буквой «м»:

    4 5/11-2 8/11, числитель первой дроби меньше, чем второй. Для этого занимаем одно целое число у первой дроби, получаем,
    3 5/11+11/11=3 целых 16/11, отнимаем от первой дроби вторую:
    3 16/11-2 8/11=1 целая 8/11

    • Будьте внимательны при выполнении задания, не забывайте преобразовывать неправильные дроби в смешанные, выделяя целую часть. Для этого необходимо значение числителя разделить на значение знаменателя, то что получилось, встаёт на место целой части, остаток – будет числителем, например:

    19/4=4 ¾, проверим: 4*4+3=19, в знаменателе 4 остаётся без изменений.

    Подведём итог:

    Перед тем как приступить к выполнению задания, связанного с дробями, необходимо проанализировать, что это за выражение, какие преобразования нужно совершить над дробью, чтобы решение было правильным. Ищите более рациональные способ решения. Не идите сложными путями. Распланируйте все действия, решайте сначала в черновом варианте, затем переносите в школьную тетрадь.

    Чтобы не произошло путаницы при решении дробных выражений, необходимо руководствоваться правилом последовательности. Решайте всё внимательно, не торопясь.

    Следующее действие, которое можно выполнять с обыкновенными дробями, - вычитание. В рамках этого материала мы рассмотрим, как правильно вычислить разность дробей с одинаковыми и разными знаменателями, как вычесть дробь из натурального числа и наоборот. Все примеры будут проиллюстрированы задачами. Заранее уточним, что мы будем разбирать лишь случаи, когда разность дробей дает в итоге положительное число.

    Yandex.RTB R-A-339285-1

    Как найти разность дробей с одинаковыми знаменателями

    Начнем сразу с наглядного примера: допустим, у нас есть яблоко, которое разделили на восемь частей. Оставим пять частей на тарелке и заберем две из них. Это действие можно записать так:

    В итоге у нас осталось 3 восьмых доли, поскольку 5 − 2 = 3 . Получается, что 5 8 - 2 8 = 3 8 .

    Благодаря этому простому примеру мы увидели, как именно работает правило вычитания для дробей, знаменатели которых одинаковы. Сформулируем его.

    Определение 1

    Чтобы найти разность дробей с одинаковыми знаменателями, нужно из числителя одной вычесть числитель другой, а знаменатель оставить прежним. Это правило можно записать в виде a b - c b = a - c b .

    Такую формулу мы будем использовать и в дальнейшем.

    Возьмем конкретные примеры.

    Пример 1

    Вычтите из дроби 24 15 обыкновенную дробь 17 15 .

    Решение

    Мы видим, что эти дроби имеют одинаковые знаменатели. Поэтому все, что нам нужно сделать, – это вычесть 17 из 24 . Мы получаем 7 и дописываем к ней знаменатель, получаем 7 15 .

    Наши подсчеты можно записать так: 24 15 - 17 15 = 24 - 17 15 = 7 15

    Если необходимо, можно сократить сложную дробь или выделить целую часть из неправильной, чтобы считать было удобнее.

    Пример 2

    Найдите разность 37 12 - 15 12 .

    Решение

    Воспользуемся описанной выше формулой и подсчитаем: 37 12 - 15 12 = 37 - 15 12 = 22 12

    Легко заметить, что числитель и знаменатель можно разделить на 2 (об этом мы уже говорили ранее, когда разбирали признаки делимости). Сократив ответ, получим 11 6 . Это неправильная дробь, из которой мы выделим целую часть: 11 6 = 1 5 6 .

    Как найти разность дробей с разными знаменателями

    Такое математическое действие можно свести к тому, что мы уже описывали выше. Для этого просто приведем нужные дроби к одному знаменателю. Сформулируем определение:

    Определение 2

    Чтобы найти разность дробей, у которых разные знаменатели, необходимо привести их к одному знаменателю и найти разность числителей.

    Рассмотрим на примере, как это делается.

    Пример 3

    Вычтите из 2 9 дробь 1 15 .

    Решение

    Знаменатели разные, и нужно привести их к наименьшему общему значению. В данном случае НОК равно 45 . Для первой дроби необходим дополнительный множитель 5 , а для второй – 3 .

    Подсчитаем: 2 9 = 2 · 5 9 · 5 = 10 45 1 15 = 1 · 3 15 · 3 = 3 45

    У нас получились две дроби с одинаковым знаменателем, и теперь мы легко можем найти их разность по описанному ранее алгоритму: 10 45 - 3 45 = 10 - 3 45 = 7 45

    Краткая запись решения выглядит так: 2 9 - 1 15 = 10 45 - 3 45 = 10 - 3 45 = 7 45 .

    Не стоит пренебрегать сокращением результата или выделением из него целой части, если это необходимо. В данном примере нам этого не нужно делать.

    Пример 4

    Найдите разность 19 9 - 7 36 .

    Решение

    Приведем указанные в условии дроби к наименьшему общему знаменателю 36 и получим соответственно 76 9 и 7 36 .

    Считаем ответ: 76 36 - 7 36 = 76 - 7 36 = 69 36

    Результат можно сократить на 3 и получить 23 12 . Числитель больше знаменателя, а значит, мы можем выделить целую часть. Итоговый ответ - 1 11 12 .

    Краткая запись всего решения - 19 9 - 7 36 = 1 11 12 .

    Как вычесть из обыкновенной дроби натуральное число

    Такое действие также легко свести к простому вычитанию обыкновенных дробей. Это можно сделать, представив натуральное число в виде дроби. Покажем на примере.

    Пример 5

    Найдите разность 83 21 – 3 .

    Решение

    3 – то же самое, что и 3 1 . Тогда можно подсчитать так: 83 21 - 3 = 20 21 .

    Если в условии необходимо вычесть целое число из неправильной дроби, удобнее сначала выделить из нее целое, записав ее в виде смешанного числа. Тогда предыдущий пример можно решить иначе.

    Из дроби 83 21 при выделении целой части получится 83 21 = 3 20 21 .

    Теперь просто вычтем 3 из него: 3 20 21 - 3 = 20 21 .

    Как вычесть обыкновенную дробь из натурального числа

    Это действие делается аналогично предыдущему: мы переписываем натуральное число в виде дроби, приводим обе к единому знаменателю и находим разность. Проиллюстрируем это примером.

    Пример 6

    Найдите разность: 7 - 5 3 .

    Решение

    Сделаем 7 дробью 7 1 . Делаем вычитание и преобразуем конечный результат, выделяя из него целую часть: 7 - 5 3 = 5 1 3 .

    Есть и другой способ произвести расчеты. Он обладает некоторыми преимуществами, которыми можно воспользоваться в тех случаях, если числители и знаменатели дробей в задаче – большие числа.

    Определение 3

    Если та дробь, которую нужно вычесть, является правильной, то натуральное число, из которого мы вычитаем, нужно представить в виде суммы двух чисел, одно из которых равно 1 . После этого нужно вычесть нужную дробь из единицы и получить ответ.

    Пример 7

    Вычислите разность 1 065 - 13 62 .

    Решение

    Дробь, которую нужно вычесть – правильная, ведь ее числитель меньше знаменателя. Поэтому нам нужно отнять единицу от 1065 и вычесть из нее нужную дробь: 1065 - 13 62 = (1064 + 1) - 13 62

    Теперь нам нужно найти ответ. Используя свойства вычитания, полученное выражение можно записать как 1064 + 1 - 13 62 . Подсчитаем разность в скобках. Для этого единицу представим как дробь 1 1 .

    Получается, что 1 - 13 62 = 1 1 - 13 62 = 62 62 - 13 62 = 49 62 .

    Теперь вспомним про 1064 и сформулируем ответ: 1064 49 62 .

    Используем старый способ, чтобы доказать, что он менее удобен. Вот такие вычисления вышли бы у нас:

    1065 - 13 62 = 1065 1 - 13 62 = 1065 · 62 1 · 62 - 13 62 = 66030 62 - 13 62 = = 66030 - 13 62 = 66017 62 = 1064 4 6

    Ответ тот же, но подсчеты, очевидно, более громоздкие.

    Мы рассмотрели случай, когда нужно вычесть правильную дробь. Если она неправильная, мы заменяем ее смешанным числом и производим вычитание по знакомым правилам.

    Пример 8

    Вычислите разность 644 - 73 5 .

    Решение

    Вторая дробь – неправильная, и от нее надо отделить целую часть.

    Теперь вычисляем аналогично предыдущему примеру: 630 - 3 5 = (629 + 1) - 3 5 = 629 + 1 - 3 5 = 629 + 2 5 = 629 2 5

    Свойства вычитания при работе с дробями

    Те свойства, которыми обладает вычитание натуральных чисел, распространяются и на случаи вычитания обыкновенных дробей. Рассмотрим, как использовать их при решении примеров.

    Пример 9

    Найдите разность 24 4 - 3 2 - 5 6 .

    Решение

    Схожие примеры мы уже решали, когда разбирали вычитание суммы из числа, поэтому действуем по уже известному алгоритму. Сначала подсчитаем разность 25 4 - 3 2 , а потом отнимем от нее последнюю дробь:

    25 4 - 3 2 = 24 4 - 6 4 = 19 4 19 4 - 5 6 = 57 12 - 10 12 = 47 12

    Преобразуем ответ, выделив из него целую часть. Итог - 3 11 12 .

    Краткая запись всего решения:

    25 4 - 3 2 - 5 6 = 25 4 - 3 2 - 5 6 = 25 4 - 6 4 - 5 6 = = 19 4 - 5 6 = 57 12 - 10 12 = 47 12 = 3 11 12

    Если в выражении присутствуют и дроби, и натуральные числа, то рекомендуется при подсчетах сгруппировать их по типам.

    Пример 10

    Н айдите разность 98 + 17 20 - 5 + 3 5 .

    Решение

    Зная основные свойства вычитания и сложения, мы можем сгруппировать числа следующим образом: 98 + 17 20 - 5 + 3 5 = 98 + 17 20 - 5 - 3 5 = 98 - 5 + 17 20 - 3 5

    Завершим расчеты: 98 - 5 + 17 20 - 3 5 = 93 + 17 20 - 12 20 = 93 + 5 20 = 93 + 1 4 = 93 1 4

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Инструкция

    Принято разделять обыкновенные и десятичные дроби , знакомство с которыми начинается еще в средней школе. В настоящее нет такой области знаний, где не применялось бы это . Даже в мы говорим первая 17 века, и все сразу , что имеются ввиду 1600-1625 года. Также часто приходится сталкиваться с элементарными действиями над , а также их преобразованием из одного вида в другой.

    Приведение дробей к общему знаменателю является, пожалуй, наиболее важным действием над . Это основа проведения абсолютно всех вычислений. Итак, допустим есть две дроби a/b и c/d. Тогда, для того чтобы привести их к общему знаменателю, нужно найти наименьшее общее кратное (М) чисел b и d, и далее умножить числитель первой дроби на (М/b), а числитель второй на (M/d).

    Сравнение дробей, еще одна немаловажная задача. Для того чтобы это сделать, приведите заданные простые дроби к общему знаменателю и потом сравните числители, чей числитель окажется больше, та дробь и больше.

    Для того чтобы выполнить сложение или вычитание обыкновенных дробей, нужно привести их к общему знаменателю, а после произвести нужное математическое с этих дробей. Знаменатель же остается без изменения. Допустим нужно из a/b вычесть c/d. Для этого требуется найти наименьшее общее кратное M чисел b и d, и после вычесть из одного числителя другой, не меняя при этом знаменатель: (a*(M/b)-(c*(M/d))/M

    Достаточно просто умножить одну дробь на другую, для этого следует просто перемножить их числители и знаменатели:
    (a/b)*(c/d)=(a*c)/(b*d)Чтобы разделить одну дробь на другую, нужно дробь делимого умножить на дробь обратную делителю. (a/b)/(c/d)=(a*d)/(b*c)
    Стоить напомнить, что для того чтобы получить обратную дробь, нужно числитель и знаменатель поменять местами.