Методы снижения выбросов на предприятии. Методы снижения выбросов в атмосферу

Может быть использовано при сжигании угля, нефти и других видов топлива. Готовят топливную дисперсную систему, состоящую из топлива, жидких и твердых присадок путем диспергирования и перемешивания компонентов, подают приготовленную систему в камеру сгорания, причем приготовление топливной дисперсной системы проводят в две стадии, сначала готовят суспензию твердой присадки в жидкой присадке или в топливе, а затем в суспензию присадок или в суспензию топлива и присадки вводят оставшиеся компоненты топливной дисперсной системы, диспергируют, диаметр частиц суспензии не превышает 25 мкм, а диаметр частиц твердой присадки в суспензии не превышает 20 мкм. Позволяет повысить эффективность использования присадок.

Изобретение относится к области теплоэнергетики, в частности к сжиганию угля, нефти, и других видов топлива в топках котлов ТЭС, в отопительных котельных и т.д. Известны способы сжигания топлив, предусматривающие снижение загрязнения отходящих газов на выходе из установки сжигания путем обработки отходящих газов химическими и физико-химическими методами, которые требуют больших капитальных затрат на сооружение очистных установок и расходов на их эксплуатацию . Известны способы снижения концентрации вредных веществ при сжигании топлива непосредственно в камере сгорания путем использования дополнительных веществ, добавляемых к топливам или в топки . В способе для удаления окислов серы и азота из дымовых газов, получаемых при сжигании угля, нефти и других видов топлива, в топочные газы вдувают тонко измельченные частицы оксида магния в избыточном количестве по отношению к количеству, необходимому для полного связывания вредных веществ, в присутствии воды. Известный способ уменьшения выбросов вредных веществ при сжигании основан на впрыскивании присадки в виде водной суспензии непосредственно в камеру сгорания. Эти способы позволяют снизить концентрацию окислов азота и серы в отходящих дымовых газах в 2-2,5 раза. Однако в этих способах присадки вносят непосредственно в камеру сгорания, при этом присадки распределяются в камере относительно топлива и окислителя неравномерно, т.е. относительные концентрации воды и присадки к концентрации топлива и окислителя неоднородны и зависят от координаты пространства в камере сгорания. Поэтому подавление образования вредных компонентов отходящих газов и их поглощение происходят неэффективно. Известны способы снижения выбросов вредных веществ, предусматривающие предварительную обработку топлива и всех добавляемых компонентов перед подачей в камеру сгорания . В этих способах достигается равномерное распределение в пространстве топки всех компонентов и более полное связывание, подавление и удаление вредных выбросов, содержащихся в дымовых газах, являющихся продуктом горения. Наиболее близким к изобретению по совокупности существенных признаков является способ повышения эффективности сжигания топлива с уменьшенным образованием оксидов азота и серы в отходящих газах путем подготовки топливной дисперсной системы, состоящей из топлива, присадок в виде поглотителя серы и ингибитора и подачи подготовленной топливной дисперсной системы в камеру сгорания . В известном способе также достигается однородность распределения компонентов топлива в камере сгорания, однако в известном способе не предусмотрены условия, обеспечивающие однородность компонентов в топливной дисперсной системе при ее приготовлении, что снижает эффективность использования добавляемых к топливу веществ. Задача, на решение которой направлено изобретение, заключается в более полном связывании вредных веществ, образующихся в процессе сжигания топлива. Указанная задача решается за счет приготовления топливной дисперсной системы с улучшенным распределением в ней присадок, что приводит к более эффективному использованию последних. Указанный технический результат достигается тем, что в известном способе снижения выбросов вредных веществ в установках сжигания топлива, включающем приготовление топливной дисперсной системы, состоящей из топлива, жидких и твердых присадок путем диспергирования и перемешивания компонентов и подачу приготовленной топливной дисперсной системы в камеру сгорания, приготовление топливной дисперсной системы проводят в две стадии, сначала приготавливают суспензию твердой присадки в жидкой присадке или в топливе, а затем в суспензию присадок или в суспензию топлива и присадки вводят оставшиеся компоненты топливной дисперсной системы и диспергируют, при этом диаметр частиц суспензии присадок в топливе не превышает 25 мкм, а диаметр частиц твердой присадки в суспензии не превышает 20 мкм. Получают сложную топливную дисперсную систему, которая состоит из топлива, внутри которого равномерно распределены капли суспензии твердой присадки в жидкой присадке или капли суспензии топлива с твердой присадкой, в которой равномерно распределены капли жидкой присадки. Топливная дисперсная система в виде капель, включающих капли суспензии, попадая в зону высоких температур камеры сгорания, взрывообразно распадается на еще меньшие капли под действием давления паров жидкой присадки (вскипающей воды) с суспензией, которые находятся в капле топливной дисперсной системы, полученной при ее распылении в камере сгорания топлива. При приготовлении суспензии топлива и твердой присадки и последующего диспергирования с жидкой присадкой (водой) получают топливную дисперсную систему, в которой капли жидкой присадки (воды) находятся в суспензии или смеси присадки и топлива. Распыление капель топливной дисперсной системы в камере сгорания и затем дополнительное распыление при взрывообразном вскипании воды приводит к эффективному взаимодействию с образующимися вредными веществами и уменьшению выбросов в отходящие газы вредных продуктов неполного сгорания, окислов азота и серы. В качестве твердых присадок можно использовать CaCO 2 , MgO, Ca(OH) 2 и др. В качестве жидкой присадки можно использовать воду. Проведенный заявителем анализ уровня техники позволил установить, что заявителем не обнаружен аналог, характеризующийся признаками, идентичными всем существенным признакам заявленного изобретения, следовательно заявленное изобретение является новым. Анализ известных из уровня техники решений в отношении отличительных признаков заявленного изобретения показал, что заявленное решение не следует для специалиста явным образом из известного уровня техники, т.е. соответствует требованию изобретательского уровня. Обеспечиваемый изобретением технический результат по сравнению с прототипом заключается в следующем. Уменьшаются коэффициенты механического и химического недожога, и увеличивается степень сгорания топлива, за счет тонкого распыления предварительно подготовленного топлива в окислителе в топочном пространстве устройства сгорания топлива. Увеличивается поверхность контакта топлива с окислителем, а это приводит к тому, что продукты неполного сгорания топлива, которые являются вредными и содержатся в отходящих газах, образуются в уменьшенном количестве. Понижается максимальная (пиковая) температура в устройствах сжигания топлива, уменьшается градиент температуры, температурное поле становится более однородным, что приводит к уменьшению образования вредных соединений - окислов азота и продуктов неполного сгорания топлива. Увеличивается интенсивность горения мелких капель топливной дисперсной системы, дополнительно распыленной парами воды, что, кроме уменьшения коэффициентов механического и химического недожога, то есть уменьшения расхода топлива и выброса сажи, вызывает уменьшение длины факела горения, стабилизацию горения факела, что приводит к возможности уменьшения длины и объема установки сжигания топлива и капитальных затрат. При сжигании используют топливную дисперсную систему со следующими компонентами: топливо - жидкий серусодержащий нефтепродукт типа мазута, жидкая присадка - ингибитор реакции образования окислов азота - вода, серусвязующая твердая присадка - измельченный оксид магния. Кроме того, в камеру сжигания подают окислитель - кислород воздуха. На первой стадии измельченный оксид магния до размеров частиц не более 20 мкм, взятый в избыточном количестве по отношению к стехиометрическому в 1,5-1,8 раза, которого достаточно для связывания содержащейся в топливе серы, смешивают с водой, взятой в количестве 30%. Полученную суспензию твердой присадки в воде и мазут в диспергатор. В случае использования суспензии топлива и присадки на первой стадии измельченный оксид магния с размером частиц не более 20 мкм, взятый в количестве в соответствии с вышеуказанным, смешивают с топливом, затем полученную суспензию и воду подают в диспергатор. В диспергаторе непрерывного действия, при необходимости с линией рециркуляции, получают топливную дисперсную систему, в которой дисперсная фаза - суспензия присадки в воде - равномерно распределена в виде мелких частиц размером до 25 мкм в топливе. При сжигании топлива происходит относительное однородное распределение всех подаваемых компонентов системы. Капли топлива с каплями суспензии присадки в воде взрывообразно разбиваются на еще более мелкие капли топлива, сгорающие за меньшее время, что обеспечивает уменьшение коэффициентов механического и химического недожога, уменьшение количества продуктов неполного сгорания и уменьшение вредных выбросов в атмосферу. При проведении испытаний мода распределения частиц суспензии в мазуте изменялась от 7 мкм до 15 мкм в зависимости от режима работы диспергатора и содержания воды. При добавлении воды учитывалась вода, находящаяся в обводненном топливе. Таким образом, предварительное диспергирование присадки с водой или топливом позволяет равномерно распылять в камере сгорания не только топливо, но и равномерно вводить присадки, что ведет к увеличению эффективности связывания вредных компонентов и уменьшению их образования. Источники информации 1. Русанов А. А., Урбах И.И., Анастасиади А.П. Очистка дымовых газов в промышленной энергетике. М., Энергия, 1969. 2. Патент ФРГ N 3410731, кл. B 01 D 53/34, 1985. 3. Патент ФРГ N 3444469, кл. C 01 L 10/00, 1986. 4. Патент ФРГ N 3409014, кл. C 01 L 10/00, 1985. 5. Патент ФРГ N 3325570, кл. C 01 L 10/00, 1985. 6. Заявка RU N 94003846/26, кл. B 01 D 53/60, 1995.

Формула изобретения

Способ снижения выбросов вредных веществ в установках сжигания топлива, включающий приготовление топливной дисперсной системы, состоящей из топлива, жидких и твердых присадок путем диспергирования и перемешивания компонентов и подачу приготовленной топливной дисперсной системы в камеру сгорания, отличающийся тем, что приготовление топливной дисперсной системы проводят в две стадии, сначала приготавливают суспензию твердой присадки в жидкой присадке или в топливе, а затем в суспензию присадок или в суспензию топлива и присадки вводят оставшиеся компоненты топливной дисперсной системы, диспергируют, при этом диаметр частиц суспензии не превышает 25 мкм, а диаметр частиц твердой присадки в суспензии не превышает 20 мкм.

В рамках соглашений о взаимодействии, подписанных министерством с предприятиями Калужской области проводятся мероприятия-мониторинг по контролю за предельно допустимыми выбросами. Например, Агрегатный завод вложит миллион рублей в дальнейшее развитие проекта «Завод-парк». В рамках данного проекта планируется высадить несколько сот деревьев и кустарников, организовать аллеи и пешеходные дорожки, выделить зоны для отдыха и занятий спортом. В свою очередь, Чугунолитейное предприятие уже инвестировало в модернизацию вытяжной вентиляции 1450 тыс. рублей

Одной из главных задач в Курской области стало снижение выбросов вредных загрязняющих веществ в атмосферу. Для этого проведена работа по замене автобусов с дизельным двигателем на автобусы, работающие на газомоторном топливе. Внедрено односторонне движение, а также строительство транспортных узлов и развязок, в результате которых за последние 3 года уменьшен объем выбросов от передвижных источников на 11 тыс. тонн.

Управлением экологии Липецкой области была введена акция «День отказа от использования личного автотранспорта», которая проводится в середине последнего месяца каждого квартала. Хочется отметить, что данное мероприятие не только формирует экологическую культуру населения, но и помогает повысить чистоту атмосферного воздуха в области.

Москва также уделяет большое внимание вопросам загрязнения воздуха, так, например, с января 2016 года введены требования по качеству моторного топлива на уровне Евро-5. А уже с 1 января 2017 года стали действовать ограничения для грузовых автомобилей и автобусов по экологическим классам при въезде в пределы МКАД и на МКАД. Данные экологического мониторинга в городе показывают, что, несмотря на рост количества зарегистрированных в городе автомобилей, в результате перечисленных мер удалось не только сдерживать рост загрязнений атмосферного воздуха, но и снижать по ряду показателей. Также в Москве на всех объектах первой категории по негативному воздействию на окружающую среду созданы и функционируют автоматизированные системы локального экологического мониторинга промышленных выбросов — это ТЭЦ, мусоросжигательные заводы, нефтеперерабатывающий завод, котельные. Системы начали создаваться на московских предприятиях с 2007 года, в настоящее время Системы функционируют на 55 объектах.

В Тамбовской области была проведена операция «Чистый воздух», которая направлена на профилактику фактов превышения предельно допустимой концентрации вредных выбросов в атмосферу от передвижных источников. Особое внимание при проведении данного мероприятия уделялось пассажирскому автомобильному транспорту. Поэтому экологами с помощью измерителей содержания загрязняющих веществ в выхлопных газах ООО «Контольавтоцентр» было проверено 8 автобусов, в 4 случаях были выявлены нарушения природоохранного законодательства. Владельцам автобусов, находящихся в технически неудовлетворительном состоянии, пришлось не только выплатить штраф, но и принять меры к ремонту транспорта.

СЗФО: Улучшение атмосферы

По данным Калининградского центра по гидрометеорологии и мониторингу окружающей среды в Калининграде за 2016 год наблюдается тенденция по улучшению качества атмосферного воздуха и снижению вредных веществ в атмосфере (по диоксиду азота и взвешенным веществам). Впервые за много лет степень загрязненности атмосферного воздуха в городе Калининграде характеризовалась как низкая. В центральной части Калининграда на базе программно-аппаратных средств АПК «Безопасный город» запущена рабочая версия системы, которая осуществляет мониторинг выбросов парниковых газов. Система помогает оценивать экологический эффект от принимаемых мер транспортной политики города.

Продолжается газификация населенных пунктов региона, переводятся на газ угольные котельные. Всего с 2016 по 2020 годы на газ планируется перевести 86 котельных, в 2017 году — 35 котельных. Это мероприятие позволит сократить вредные выбросы в атмосферу более чем на 3 тысячи тонн.

В июле 2017 года по решению суда была приостановлена деятельность производства по плавке металлов ООО «Браво БВР», несколько лет отравлявшего воздух в поселке Прибрежном. Рассмотрение вопроса о приостановке деятельности завода, расположенного в нескольких десятках метров от жилых домов и социальных объектов, было инициировано губернатором Калининградской области Антоном Алихановым на основании многочисленных жалоб местных жителей. По его поручению региональное Минприроды во взаимодействии с Калининградской межрайонной природоохранной прокуратурой усилили работу по привлечению к ответственности промышленных предприятий, загрязняющих атмосферный воздух в Прибрежном.

Наблюдения за состоянием атмосферного воздуха ведутся Псковским центром по гидрометеорологии и мониторингу окружающей среды — филиалом федерального государственного бюджетного учреждения «Северо-Западное управление по гидрометеорологии и мониторингу окружающей среды» на двух стационарных постах в городе Пскове и в городе Великие Луки.

Уровень загрязнения атмосферного воздуха в целом по городу Пскову невысокий, в городе Великие Луки степень загрязнения атмосферы оценивается как низкая.

В настоящее время Государственным комитетом Псковской области по делам строительства и жилищно-коммунального хозяйства ведется разработка региональной программы по обращению с отходами. В указанную региональную программу планируются включить следующие мероприятия: строительство, реконструкция объектов размещения отходов; строительство объектов по переработке и утилизации отходов; ликвидация несанкционированных свалок.

ЮФО: Электричество вместо бензина

В настоящее время в целях улучшения качества атмосферного воздуха на территории муниципальных образований Краснодарского края реализуются мероприятия, направленные на использование электрического транспорта (трамвай, троллейбус), перевод автомобилей на сжиженный газ и реализация мер по повышению привлекательности для населения общественного пассажирского транспорта, обеспечение его приоритетного движения. Например, ООО «Электо» планирует создание сети быстрых электрозарядных станций, такси на электромобилях, а также сервиса аренды электромобилей (каршеринг).

Также в целях снижения вредных выбросов в атмосферный воздух в 2017 году на ООО «ЕвроХим-Белореченские Минудобрения» (город Белореченск) проведена реконструкция склада апатитового концентрата. Модернизирована система газоочистки электросталеплавильного цеха для ООО «Абинский ЭлектроМеталлургический завод».

СКФО: Передвижные посты наблюдения

На территории Чеченской Республики в настоящее время не высокий уровень загрязнения атмосферы, в связи с отсутствием крупных промышленных источников загрязнения. Вместе с тем, в соответствии с Государственной программой «Охрана окружающей среды и развитие лесного хозяйства Чеченской Республики» планируется внедрение программных продуктов и организация системы передвижных постов наблюдения по системному учету выбросов в атмосферный воздух за счет средств республиканского бюджета в размере три миллиона рублей.

ПФО: Солнечная энергия

В Оренбургской области реализуются мероприятия, направленные на развитие альтернативной энергетики: строительство солнечных электростанций, суммарная мощность которых на территории области должна достигнуть 100 МВт, а также установка ветроэнергетических и биогазовых установок. Немаловажными в этом направлении являются мероприятия по переводу городского общественного автомобильного транспорта и коммунальной техники на использование газомоторного топлива, газификации населенных пунктов, что позволяет значительно сокращать выбросы загрязняющих веществ в атмосферный воздух.

Также на территории области проводятся мероприятия по снижению вредных выбросов в атмосферу. Например, были построены установки по утилизации и сжигании попутного нефтяного газа (ПНГ) (ООО «Бугурусланнефть», ПАО «Оренбургнефть»). ООО «ММСК» произвели техническое перевооружение цеха серной кислоты.

В республике Марий Эл промышленными предприятиями с целью снижения объемов выбросов загрязняющих веществ в атмосферный воздух осуществляется перевод оборудования от использования традиционных видов топлива на газообразное топливо, приобретение газоочистных сооружений, а также реконструкция сооружений газоочистки. Так, на ОАО «Марийский целлюлозно-бумажный комбинат» для очистки поступающих в атмосферный воздух выбросов осуществляется установка газоочистных сооружений; в границах промышленной площадки предприятия будут посажены более 1000 саженцев сосны.

УФО: Защита от пыли

В Курганской области ведётся запланированная установка (ремонт) пылегазоочистительных установок на ОАО «НПО «Курганприбор», ЗАО «Катайский насосный завод», ООО «Зауральский кузнечно-литейный завод», АО «Кургандормаш». Также, Планируется перевод четырех котельных с твердого топлива на природный газ в Шатровском районе.

В Ханты-Мансийском автономном округе — Югре благодаря реализации нефтяными компаниями долгосрочных программ по утилизации попутного нефтяного газа (строительство газопроводов, компрессорных станций) наблюдается снижение объемов выбросов загрязняющих веществ в атмосферный воздух на 1 млн. тонн.

Необходимо отметить, что большинство крупных нефтяных компаний не только достигли требований национального стандарта Российской Федерации по 95-процентному уровню утилизации, но и превысили его. Это связано с развитием «малой» энергетики, представленной газотурбинными и газопоршневыми электростанциями, которые обеспечивают электроэнергией и теплом предприятия нефтегазового комплекса.

СФО: Централизованное теплоснабжение

На территории Забайкальского края проведена реконструкция существующих золоуловителей на котлах Читинской ТЭЦ-1, что помогло снизить годовой выброс твердых веществ в атмосферный воздух на 146 тонн золы в год и на 16 тонн сажи.

Также были закрыты две котельные в городе, находящиеся в муниципальном управлении. Суммарный экологический эффект от закрытия котельных и переключения на централизованное теплоснабжение, выраженный в годовом снижении вредных выбросов, поступающих в атмосферу Читы, составит 67 тонн в год для двух объектов.

ДФО: Газ как топливо

На территории Сахалина реализуется программа «Развитие промышленности в Сахалинской области на период до 2020 года». Ее основной цель — создание газозаправочной инфраструктуры и переоборудование автотранспорта и сельскохозяйственной техники, использующих природный газ в качестве моторного топлива.

Выброс ядовитых веществ особенно силен в крупных городах и центрах промышленности. Человек в среднем за сутки человек вдыхает до 20 тысяч литров воздуха. Однако вместе с необходимым организму чистым кислородом мы проносим через легкие ядовитые пары, частицы копоти и пепла. Они оседают в наших легких, отравляя человека. Долгое воздействие смога приводит к общему плохому самочувствию, позже – к головным болям и тошноте, раздражаются слизистые оболочки, развиваются болезни легких и сердечно-сосудистой системы. Если не принять никаких мер, оседающие в организме вещества приведут к летальному исходу.

Разрушение озонового слоя приводит к сильному облучению всей планеты. Ультрафиолетовые лучи сильнее начинают действовать на организм животных и человека. Пагубное влияние радиации вызывает общее ослабление иммунитета, развитие страшных болезней: рака кожи и слизистых оболочек, катаракты.

Парниковый эффект

Возникает вследствие вырубки лесов и истощение озонового слоя атмосферы Земли. Дыры в верхних слоях атмосферы пропускают все больше солнечной радиации, затем тепло подогревает , а те – поверхность планеты. Уже от земли тепло вновь подогревает планету. Причина того, что излучение не возвращается в космос, кроется в скоплении парниковых газов в нижнем слое воздушной оболочки, дела ее слишком плотной.

Парниковый эффект может привести к другой проблеме – «глобальному потеплению». Из-за задержки теплового излучения на планете начинает повышаться средняя температура Земли. Это приводит к таянию ледников на полюсах, затем к повышению уровня мирового океана. Ученые уже наблюдают постоянные затопления некоторых прибрежных зон. Если парниковый эффект не остановить, произойдет затопление многих участков суши, погибнут животные, люди и растения.

Кислотные дожди

Из-за выброса в атмосферу Земли в больших объемах вредных веществ промышленными предприятиями случается такое явление, как кислотные дожди. при взаимодействии с парами воды в воздухе образуют кислоту.

Выпадающие кислотные осадки, дожди и снег становятся кислыми. Они приводят к страшным последствиям для всей природы:

  • При взаимодействии с бетонными и кирпичными строениями наносят им непоправимый вред. Повреждаются отделка, трубы, крыши;
  • За несколько десятков лет кислотные осадки испортили множество памятников культуры;
  • Автомобили, попавшие под кислотный дождь, становятся непригодными для использования, ломаются двигатели, разъедается металл, шины и стекло;
  • Отравляется почва. Она становится кислой, что приводит к понижению ее плодородия;
  • Кислотные дожди губят растения, опустошая целые зеленые участки;
  • Кислотный дождь и снег несет огромные убытки всему сельскому хозяйству. Гибнет отборный урожай, гниют деревья, отравленной травой питаются сельскохозяйственные животные, которые либо тяжело заболевают, либо умирают;
  • Такие осадки отравляют водоемы, что приводит к гибели этой экосистемы.

Пути решения проблемы загрязнения атмосферы

Проблема загрязнения воздушной оболочки нашей планеты – дело каждого человека без исключения. Для уменьшения пагубного влияния промышленной деятельности человека привлекаются ученые.

Для того, чтобы промышленные предприятия выбрасывали в атмосферу меньше ядовитых веществ, предлагается несколько способов:

  • Абсорбционный (поглотительный): предполагает установку фильтров из активированного угля, известняка и его щелочных растворов, аммиака. Эти вещества отлично впитывают в себя вредные газы. К плюсам этого способа относят хорошее качество очистки и простоту. Однако устройства с фильтрами занимают достаточно много места, а также периодически менять очистительную жидкость;
  • Окислительный способ хорош тем, что выжигает в воздух горючие вредные примеси. К минусу такого метода относят выделение углекислого газа;
  • Каталитический: ядовитые пары и газы пропускают через твердые катализаторы, ускоряющие процесс отделения вредных веществ и примесей. Способ хоть и действенный, но требует огромных средств и тратит много энергии;
  • Механический способ применяют уже достаточно редко. Газ загоняют в специальные турбины, где винтами, создающих вихри, собираются ядовитые частицы. Кроме высоких затрат энергии и необходимости постоянного обслуживания аппарата (удаление с винтов собранных частиц) этот способ малоэффективен, слабо очищает воздух;
  • Электроогневой способ – самый новый и самый эффективный из всех существующих способов очистки газов. Необходимое для очистки загоняется в сосуды, а после – пропускается сквозь наэлектризованное пламя. К сожалению этот метод очень трудно осуществить и поэтому применяется редко.

Иногда лучше сочетать сразу несколько способов очистки воздуха от ядовитых веществ.
Чтобы обезопасить атмосферу от выбросов в нее выхлопных газов из промышленных и выхлопных труб, в них устанавливаются фильтры, специальные добавки, в которые не входит свинец, каталитические нейтрализаторы. Очень важно следить за качеством заливаемого топлива: дешевое масло и бензин выделяют слишком много вредных веществ. Стали выпускаться новые модели автомобилей, выбрасывающие в атмосферу значительно меньше ядовитых газов. Во многих странах общественный транспорт стал полностью работать от электричества или на биотопливе. В некоторые транспортные средства устанавливают газобаллонное оборудование. Ведутся разработки двигателей, которые не нуждаются в переключении на другие режимы.

Организация крупных городов также требует изменений. Заводы, предприятия, автотрассы и аэропорты необходимо отделять от жилых районов плотной зеленой стеной из деревьев и кустарников, выступающих в роли естественного фильтра и генератора кислорода. Желательно, строить промышленные организации за чертой города.

Необходимо реформировать обработку мусора, которая уменьшит размеры свалок, испускающих при разложении метан и другие вещества, разрушающие озоновый слой. Можно ввести повторное использование материалов, использовать другие способы избавления от мусора, кроме сжигания.

В сельском хозяйстве рекомендуется предложить постепенный отказ от химикатов, отравляющих как почву, так и воздушную оболочку. Навоз и другие органические остатки можно использовать в качестве натуральных удобрений, безопасных для природы.

Сохранение лесов – одна из важнейших задач современности. Именно деревья постепенно снижают действие парникового эффекта, фильтруют воздух и выделяют кислород.

Со стороны государства необходимо издать ряд законов, предусматривающих введение ответственности за загрязнение воздуха. Создание специальной службы, которая в составе комиссии будет осматривать промышленные предприятия, следить за организацией городов.

Болота по праву считаются лучшими фильтрами нашей планеты. Вредные вещества оседая в них перерабатываются в безобидные. Благодаря сохранению болот в России наша страна может похвастаться одним из лучших состоянием атмосферы.

Необходимо распространить знания о загрязнении атмосферы среди всего населения. Тогда люди начнут соблюдать ряд мер, чтобы уменьшить количество выбросов ядовитых веществ в воздушное пространство.

Уже существует завод, перерабатывающий радиоактивные отходы с атомных электростанций и предприятий, производящих реактивное топливо. Если развить это направление, то тяжелых металлов в атмосфере будет гораздо меньше.

Проблема загрязнения атмосферы на сегодняшний день наиболее актуальна. Необходимо скорее решать ее, иначе бездействие приведет к ужасным последствиям.

Содержание раздела

8.1.1. С целью снижения образования NО x в приосевой зоне горелочных устройств в котлах ТГМП-204, отапливаемых жидким топливом, предлагается модернизировать горелки . Более эффективным по мнению авторов при сжигании жидкого топлива в силу стадийности его подготовки, является ввод газов рециркуляции через отдельный канал . При этом подбирается такое соотношение скоростей воздуха и газов, при котором газы не балластируют прикорневую область горения, а достигают активной зоны горения и тормозят образование NО x в этой зоне.

На рис. 8.1 приведена схема модернизированной горелки котла ТГМП-204. Горелка состояла из двух каналов подачи воздуха (центрального и периферийного), снабженных тангенциальными регистрами.

Рис. 8.1. Схема модернизированной горелки для сжигания жидкого топлива в топке котла ТГМП-204

Скорость истечения воздуха на выходе из каналов соответственно 60 и 70 м/с. По периферии горелки расположен канал ввода газов рециркуляции со скоростью 26 м/с. В центре горелки установлена мазутная форсунка с углом раскрытия топливного факела 85°. Выход канала газов рециркуляции перекрыт кольцом, в котором просверлены отверстия диаметром 60 мм, обеспечивающие истечение газов рециркуляции со скоростью ∼50 м/с (вместо 26 м/с). На рисунке видно, ось струи газов рециркуляции проходит через фронт пламени, и их дальнобойность позволяет достигнуть предполагаемой зоны основного образования оксидов азота. При этом основная часть газов рециркуляции не попадает в корень факела, что положительно сказывается на снижении образования механического недожога q 4 . Модернизация горелок котлов ТГМП-204 позволила сократить содержание NО x в отходящих дымовых газах на 30%.

8.1.2. На котле ТГМ-84Б с целью подавления оксидов азота внедрен дозированный впрыск воды в зону горения . При водотопливном отношении q < 10% это снижение достигает 150÷170мг/м 3 , а при водотопливном отношении q ∼ 8% с работой на пониженных избытках воздуха (α = 1,04÷1,06) концентрация NО x снижается на 200–220 мг/м 3 .

В зависимости от конкретных условий для подавления оксидов может использоваться техническая вода, основной конденсат или сетевая вода.

8.1.3. В топках с фронтальной компоновкой пылеугольных горелок для снижения концентраций NО x в уходящих газах при сжигании нешлакующегося топлива без содержания S считают целесообразным организовать ступенчатый ввод вторичных (третичных) потоков воздуха , направляя их в центральную область топки между концентрированными потоками реагентов.

8.1.4. Для одновременного улавливания оксидов N и S с эффективностью до 90% в предлагают электронно-лучевую обработку дымовых газов .

Этот сухой метод очистки позволяет решить проблемы образования отходов, удаления шламов, повторного нагрева газов. Кроме того, при такой обработке получается порошкообразная смесь побочных продуктов – удобрений (NH 4) 2 SO 2 и NH 4 NO 3 .

Утверждается , что метод электронно-лучевой обработки дымовых газов дешевле мокрых известняковых (скрубберного и каталитического) методов.

8.1.5. В для снижения выхода NО x не менее, чем на 60–70%, предлагается ступенчатое сжигание топлива с вводом азотосодержащих веществ в восстановительную зону горения . Утверждается, что присутствие значительного количества азотосодержащих радикалов RNi в продуктах сгорания в области высоких температур при α < 1обеспечивает эффективное восстановление NО x , образовавшихся на начальной стадии факела, до молекулярного азота. В качестве восстановителя применяются: аммиак – NH 3 , аммиачная вода – NH 4 OH, мочевина – (NH 2) 2 CO, циануровая кислота – (HOCN) 3 .

8.1.6. Модернизация котла, отапливаемого природным газом, БКЗ-420-140 НГМ-4 путем оснащения его дутьем воздуха над горелками верхнего яруса привело к резкому снижению содержания NО x в дымовых газах .

8.1.7. На котлах с жидким шлакоудалением ТПП-312 (паропроизводительность 950 т/ч, параметры пара: 25 МПа, 545 °С) с целью снижения NО x внедрено трехступенчатое сжигание топлива . Внедрение осуществлялось путем установки дополнительных прямоточных газовых горелок и установки сопл третичного дутья (рис. 8.2).

Рис. 8.2. Схема трехступенчатого сжигания на котле ТПП-312: 1 – основные грелки; 2 – дополнительные горелки и газы рециркуляции; 3 – сопла третичного воздуха; 4 – верхние сопла рециркуляции

Дополнительные горелки были установлены встречно на фронтовом и заднем экранах, а сопла третичного дутья были размещены выше дополнительных горелок. Для обеспечения требуемой по условию шлакования ширм температуры газов в верхней части топки был выполнен аэродинамический выступ.

В результате модернизации выбросы NО x сократились в два раза. Надежность и экономичность работы котла при этом не снизились.

8.1.8. При сжигании углей различных видов в основной горелке и подаче природного газа или жидкого топлива во вторую ступень , позволили получить качественные характеристики процесса:

  • - ввод вторичного топлива следует осуществлять за зоной активного горения по потоку газов;
  • - количество топлива, подаваемого во вторую ступень, должно составлять около 20–25% по теплу;
  • - коэффициент избытка воздуха – á в агенте, транспортирующем топливо-восстановитель, не должен превышать 0,35;
  • - в качестве топлива-восстановителя предпочтительней природный газ.

Соблюдение при модернизациях указанных качественных характеристик обеспечивает снижение концентрации оксидов азота в 3 и более раз .

Там же утверждается, что высокотемпературный (до 600–800 °С) подогрев топливной пыли позволяет снизить в 3–5 раз образование «топливных» оксидов азота в пылеугольном факеле.

8.1.9. Результат от внедрения комплекса различных методов подавления NО x применительно к котлу ТГМП-114 (а) и котлу ТГМ-96Б, отапливаемых мазутом, приведен на рис. 8.3 .

Рис. 8.3. Применение комплекса технологических методов для подавления NО x на газомазутных котлах при О 2 = 6%: I – исходный вариант; II – малотоксичные горелки; III – горелки + рециркуляция; IV – горелки + ступенчатое сжигание + рециркуляция; V – ступенчатое сжигание; VI – ступенчатое сжигание + рециркуляция

8.1.10. Замена инжекционных горелок (ИГК) на вихревые газомазутные горелки дутьевого (напорного) типа у котлов паропроизводительностью до 10 т/ч («ДКВ», «ДКВР», «ДЕ», «Универсал» и др.) снижает содержание NО x в дымовых газах ∼ в 1,5–1,6 раза .

8.1.11. Модернизация горелок на котле ТГМ-84, отапливаемого природным газом, позволила снизить содержание NО x в уходящих дымовых газах н 30% и довести концентрацию NО x до 110 мг/м 3 при á = 1,4 .

Рис. 8.4. Газомазутная горелка котла ТГМ-84: а – проектная, б – модернизированная

До модернизации эксплуатировались горелки конструкции ЦКТИ (рис. 8.4, а ): газы рециркуляции в горелки подавались по периферии улиточного короба. В модернизированных горелках (рис. 8.4, б ) газы рециркуляции подаются по всему радиусу улитки.

8.1.12. Предварительная (вне топки) термическая подготовка угля – нагрев угля в бескислородной среде до температуры 650–850 °С способствует развитию процесса пиролиза угольных частиц с разрушением термически неустойчивых азотосодержащих соединений и переходом выделяющегося атомарного азота в молекулярный инертный азот.

Разработанная «Уралтехэнерго» встроенная система подогрева пыли (ВСП) полностью обеспечивает предварительную термическую подготовку угля . ВСП может быть использована в пылеугольных грелках различного типа – вихревых, прямоточных, плоскофакельных – при подаче в систему высококонцентрированной аэросмеси. Конструктивно ВСП состоит из двух основных разъемных блоков – камеры сжигания вспомогательного топлива и рабочего канала (рис. 8.5).

Рис. 8.5. Конструктивная схема вихревой пылегазовой горелки со встроенной системой подогрева угольной пыли (ВСП): 1 – основная горелка; 2 – камера сжигания вспомогательного топлива; 3 – рабочий канал; 4 – вспомогательная газовая горелка; 5 – патрубок подачи высококонцентрированной аэросмеси; 6 – запальник

Камера сжигания служит для воспламенения топливовоздушной смеси и формирования факела в ограниченном объеме.

В рабочем канале происходит: догорание вспомогательного топлива; смешение угольной пыли с высокотемпературными продуктами сгорания вспомогательного топлива; подогрев угля и выделение летучих.

Опыт промышленной эксплуатации ВСП позволил существенно улучшить выгорание топлива – содержание горючих в уносе составляет 5–6%. Концентрация оксидов азота в дымовых газах снижается до 60–70% от исходного уровня.

8.1.13. Низкоэмиссионная вихревая технология – НВТ или образование вихревого низкотемпературного процесса (НВТ) происходит в результате взаимодействия встречно-смешенных струй, вытекающих из наклоненной вниз под углом á горелки, и воздушного сопла нижнего дутья, установленного внизу топки по всей ее ширине и направленного вдоль ската холодной воронки под горелки (рис. 8.6).

Рис. 8.6. Аэродинамическая схема низкотемпературного вихревого процесса

Наклон горелок позволяет направить значительную массу топлива в нижнюю часть топки, где наиболее крупные фракции при развороте струи под действием инерции и собственной массы сепарируются из потока, вовлекаются нижним дутьем в многократную циркуляцию и сгорают в низкотемпературном вихре, а мелкие сгорают в прямоточной части факела .

Подача практически всего вторичного воздуха только через верхние сопла обеспечивает на начальном участке нижних ярусов избытки воздуха, равные 0,3–0,5. Поэтому горение в верхней части топки ведется в режиме дожигания, а в нижней – в полувосстановительной атмосфере. Снижение максимальной температуры в топке и на выходе из нее исключает шлакование экранов и пароперегревателя.

Внедрение НВТ путем модернизации котлов ПК-10, отапливаемых твердым топливом, позволило снизить в отходящих газах содержание:

В объем модернизации (рис. 8.7) входят:

  • реконструкция горелок, связанная с установкой дополнительных насадок на сопла аэросмеси и вторичного воздуха;
  • устройство ввода нижнего дутья;
  • размещение воздуховодов с регулирующими органами (шиберами);
  • ввод дробленки CaCO 3 (фракция 0,035 м) посредством дозатора на угольную ленту существующей топливоподготовки.

Рис. 8.7. Схема модернизации котлов ПК-10

8.1.14. При реализации схемы двухступенчатого сжигания пылеугольного топлива на котлах с фронтальным расположением горелок или открытыми амбразурами (например, на котлах БКЗ-75-39 ФБ) в предлагают определять по следующим формулам.

Оптимальную область ввода третичного воздуха в соответствии с :

H = 0,5(D г + h 3) + 1,5(V daf /10) 0,5 , м,

где Н – расстояние между осями горелок и воздушных сопл, м; D г – диаметр горелки, м; h 3 – высота выходного сечения сопла, м; V daf – выход летучих на горючую массу, %.

Долю третичного воздуха по формуле:

∆α 3 = α″ т – (α г + ∆α т),

где α т – коэффициент избытка воздуха на выходе из топки, ∆α т – присосы воздуха в топочную камеру, α г – коэффициент избытка воздуха в горелках.

Эффективность ступенчатого сжигания в соответствии с :

η Nox = 340 (H 0,5 – 3∆α3) × , %;

Увеличение температуры газов на выходе из топки – ∆Θ″ т в соответствии с :

∆Θ″ т = 35Н(1,1 – α г) 0,5 , °С;

Потери тепла с механическим недожогом – ∆q 4 в соответствии с :

∆q 4 = 30*H /V daf *(1,1 – α г) 2 , %.

8.1.15. Количество «термических NO x », образующихся при горении топлива, зависит от уровня максимальной температуры в ядре горения, а при горении природного газа образуются еще и «быстрые NO x », количество которых практически не зависит от температуры факела. Считают , что единственным средством для снижения «быстрых» – это полное предварительное смешение топлива с воздухом .

Фирмой Radiom Corporation (США) разработана горелка R-RMB TM . Эта горелка по данным подавляет образование как «термических» так и «быстрых» NO x . Принципиальная схема горелки приведена на рис. 8.8. Особенностью горелки является способность чрезвычайно быстрого смешения топлива с газовоздушной смесью. Достигается это в результате вода мельчайших струй природного газа в поток газовоздушной смеси в межлопаточном пространстве, обеспечивая тем самым высокую турбулентность потока.

Рис. 8.8. Схема работы горелки R-RMB TM: 1 – центральная форсунка для мазута; 2 – природный газ; 3 – воздух и газы рециркуляции; 4 – закручивающие лопатки (в промежутки лопаток подается природный газ); 5 – распыленный (дисперсный) мазут; 6 – смесь природного газа, воздуха и газов рециркуляции; 7 – стенка топочной камеры; 8 – наружная зона рециркуляции; 9 – внутренняя зона рециркуляции; 10 – участок интенсивного перемешивания топлива с газовоздушной смесью

Ориентировочно: длина факела ∼1,8 м; сопротивление по воздуху ∼1650 Па; сопротивление по природному газу ∼34–35 Па – соответствуют оптимальному режиму работы горелки.

Горелка R-RMB TM по данным обеспечивает снижение концентраций NO x в отходящих дымовых газах до уровня, который возможен при использовании метода селективного каталитического восстановления с использованием аммиака, т.е. до 9 ÷ 5 ppm (1 ppm = 1 см 3 /м 3). Отсутствие ступенчатой подачи топлива или воздуха при использовании горелок R-RMB TM позволяет избегать побочных отрицательных явлений. В частности в продуктах сгорания практически отсутствуют CO и углеводороды.

8.1.16. Эффективным методом снижения выбросов NO x является применение трехступенчатой схемы сжигания топлива (схема с восстановлением NO x или «Ребенинг») . Сущность схемы заключается в сжигании основной части топлива с избытком воздуха выше стехиометрического, например, α = 1,05 и организации после практически полного завершения выгорания топлива зоны восстановления. Зона восстановления образуется за счет подачи в нее топлива – восстановителя при α = 0,9–1,0. Третья ступень – зона дожигания организуется путем подачи в конец зоны восстановления избыточного третичного воздуха.

Сжигание высокореакционных углей с применением такой схемы позволяет снизить выбросы NO x на 40–60%.

Общая структура мероприятий по предотвращению выбросов в окружающую среду на опасных предприятиях представлена на рис. 3.14. Благодаря такому сочетанию представленных на схеме мер достигается снижение отрицательного воздействия вредных веществ на окружающую среду. Эффективность собственно технологических мероприятий по снижению выбросов в окружающую среду определяется экологической чистотой процессов. Экологически.

Рис. 3.14

чистым процессом является такое производство или совокупность производств, в результате практической деятельности которых негативное воздействие на окружающую среду не происходит или сводится к минимуму. Такие малоотходные технологические системы обеспечивают максимальное и комплексное использование сырья и энергии.

Для предприятий нефтепереработки и нефтехимии, в общем случае, это означает: модернизацию технологического оборудования; контроль за герметизацией оборудования и соблюдением технологического режима; разработку аппаратуры, предотвращающей выбросы в атмосферу либо ограничивающей их до допускаемых уровней; улучшение качества моторных и котельных топлив; очистку отходящих газов; совершенствование и сокращение факельной системы и т.д.

Целесообразность и направленность технологических и организационных мероприятий по предотвращению выбросов и улучшению экологической обстановки определяется результатами наблюдений за средой и выбросами в нее. Совершенство системы наблюдений обеспечивает эффективность применения технологических мероприятий к тем или иным производствам.

Таким образом, развитая система мониторинга окружающей среды предприятия дает возможность не только получать достаточно полную информацию о состоянии окружающей среды (МС) и источников выбросов (MB) в режиме реального времени, но и обеспечивает управление окружающей средой за счет целенаправленного и эффективного использования организационных и технологических мероприятий.

К мероприятиям по снижению выбросов вредных веществ, относят:

  • · - совершенствование технологических процессов и внедрение малоотходных и безотходных технологий;
  • · - изменение состава и улучшение качества используемых ресурсов;
  • · - комплексное использование сырья и снижение потребления ресурсов, производство которых связано с загрязнением окружающей среды;
  • · - изменение состава и улучшение качества выпускаемой продукции (неэтилированные бензины, малосернистые топлива и т.д.);
  • · - очистку сбрасываемых промышленных газов;

К мероприятиям по снижению степени распространения вредных веществ, относят: нейтрализацию, консервацию, захоронение и утилизацию выбросов. Следует отметить, что строительство высоких и сверхвысоких труб не уменьшает выброс вредных веществ в атмосферу и степень их распространения, а обеспечивает снижение приземной концентрации вредных примесей.

При рассмотрении технологических мероприятий по снижению выбросов вредных веществ их принято разбивать на группы в соответствии с тем, выбросы каких веществ они предотвращают.

К мероприятиям, проводимым по снижению выбросов оксида углерода, относятся:

  • · - каталитический дожиг отходящих газов;
  • · - утилизация больших количеств газа в котлах-утилизаторах;
  • · - дожиг отходящих газов в регенераторе (установка Г-43-107) на базе применения промотирующих добавок к основному катализатору процесса крекинга.

С ростом доли тяжелого и остаточного сырья в общем объеме сырья каталитического крекинга, а также с ужесточением экологических требований актуальность проблемы сокращения вредных выбросов в атмосферу на этих установках возрастает. Одним из наиболее рациональных и перспективных способов совершенствования процесса регенерации является регулируемое окисление СО и связывание SO 2 в объеме регенератора с помощью специальных катализаторов.

Наиболее эффективный подход к сокращению выбросов оксида углерода - предотвращение его образования. С этой целью проектируются форсунки, обеспечивающие хорошее смешение с воздухом, внедряются системы контроля за полнотой сгорания топлива и другие мероприятия. К сожалению, меры, направленные на подавление образования оксида углерода, приводят к повышению концентрации оксидов азота и наоборот. Поэтому каждый тип устройств для сжигания следует оценивать по выбросам отдельных загрязняющих веществ.

При выделении больших количеств оксида углерода (например, при выжиге кокса на регенераторных установках) его собирают и сжигают в котлах-утилизаторах. При низких концентрациях СО в выбросе требуется применять устройства для каталитического дожигания. Оксид углерода можно избирательно отделить от других газов посредством промывки специальными растворами, например, аммиачным раствором формиата меди.

Снижение выбросов оксида углерода на установках каталитического крекинга достигается дожигом отходящих газов, осуществлением полного дожига непосредственно в регенераторе на базе применения промотирующих добавок к основному катализатору (благородный металл на оксиде алюминия). Концентрация СО в отходящих газах снижается при этом от 10 до 0,1%.

Дожиг является также основным методом нейтрализации для других источников выбросов оксида углерода и других вредных углеводородов с применением новых, более эффективных катализаторов дожига. Так, разработан гранулированный катализатор НТК-11 для низкотемпературной конверсии оксида углерода с водяным паром в производствах аммиака, водорода, синтеза метанола и других процессах.

Проведены испытания установки термокаталитического дожига газов окисления битумного производства. Ранее применительно к катализатору НИИОГАЗ-10Д было показано, что при температуре в слое катализатора 500-560°С достигаются следующие пределы окисления примесей: 72-87% для С-Н и СО; 91-92,5% для H 2 S; 73-74% для RSH. На основе исследований разработан технологический регламент процесса с использованием термической и каталитической ступеней дожига. Термический процесс при температуре 400-450°С протекает в циклонной топке со степенью окисления: 75-90% H 2 S; 23-71% RSH и 56-83% СО + (СН). Каталитическое окисление проводится при температуре 500-550°С; эффективность обезвреживания оксида углерода и органических продуктов может достигать 99,8%.